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Denoising with generative model

Blog by Soledad Villar, about arXiv:1803.09319
“SUNLayer: Stable denoising with generative networks”




OUTLINE

e I. Introduction and motivation.

o II. Sparse PCA: Reminder of key facts and presentation of
the methodology.

o III. Spiked matrix estimation with generative priors: Main
results, and two take home messages.
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observation noisy transformation signal

Simple examples /DOiSG A (0,4)
e Denoising: F(v) —v+ &
e Linear inverse problem: J'(v) =Av+¢& A eR™P

e Spiked matrix estimation: F(V) = VVT f

Basic paradigm of signal processing: Structure in v serves for
recovery with better accuracy, larger noise, smaller n, etc.




SPARSITY

y=1()

There exists a basis W in which the signal v is sparse.

P

=— (n(0) =k < X el
P = Wy 0(X) P = pp

Simple examples noise //'(0,4)
® Denoising: vl =v+& v
e Compressed sensing: (v = Av + & A e R™P
e Sparse PCA: [ {v) = vl + &




SPARSE CODING

DICTIONARY LEARNING

Basis in which the signal is sparse can be learned from examples.

Sparse coding:
Having M examples of signals, learn W so that x is sparse.

Learned receptive fields
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LEARNING FROM EXAMPLES

e (Generative neural networks (autoencoders, GANS, ...):

v, = (p(4)(w(4)(p(3)(W(3)(p(2)(W(2)¢(1)(W(1)XM))))

) hidden layer 1 hidden layer 2 hidden layer 3
input layer
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THIS PERSON DOES NOT EXIST!

GANs generated people. NVIDIA research



GENERATIVE MODELS AS PRIORS

y=1()

Recover signal v from observations y, knowing that:
e Sparsity: v is k-sparse.

e A generative model learned from data: There exists
x € R¥such that

v = WD W pOWD W Dx))))

eV, W, i =1,...,L known, after training




SELECTION OF EXISTING WORKS

Inferring Sparsity: Compressed Sensing using
Generalized Restricted Boltzmann Machines
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SELECTION OF EXISTING WORKS

Semantic Image Inpainting with Deep Generative Models

arxXiv:1607.07539

Raymond A. Yeh; Chen Chen; Teck Yian Lim,
Alexander G. Schwing, Mark Hasegawa-Johnson, Minh N. Do
University of Illinois at Urbana-Champaign
{yehl7, cchenl56, tlimll, aschwing, jhasegaw, minhdo}@illinois.edu

Abstract

Semantic image inpainting is a challenging task where
large missing regions have to be filled based on the avail-
able visual data. Existing methods which extract informa-
tion from only a single image generally produce unsatisfac-
tory results due to the lack of high level context. In this pa-
per, we propose a novel method for semantic image inpaint-
ing, which generates the missing content by conditioning
on the available data. Given a trained generative model,
we search for the closest encoding of the corrupted image
in the latent image manifold using our context and prior
losses. This encoding is then passed through the generative
model to infer the missing content. In our method, infer-
ence is possible irrespective of how the missing content is
structured, while the state-of-the-art learning based method
requires specific information about the holes in the training
phase. Experiments on three datasets show that our method
successfully predicts information in large missing regions
and achieves pixel-level photorealism, significantly outper-
forming the state-of-the-art methods.

1 Toréwendszntinem

Figure 1. Semantic inpainting results by TV, LR, PM and our
method. Holes are marked by black color.

Hence they are based on the information available in the
input image, and exploit image priors to address the ill-
posed-ness. For example, total variation (TV) based ap-




SELECTION OF EXISTING WORKS

Compressed Sensing using Generative Models

Ashish Bora* Ajil Jalal' Eric Price? Alexandros G. Dimakis®

arXiv:1703.03208

The goal of compressed sensing is to estimate a vector from an underdetermined system of noisy linear measure-
ments, by making use of prior knowledge on the structure of vectors in the relevant domain. For almost all results
in this literature, the structure is represented by sparsity in a well-chosen basis. We show how to achieve guarantees
similar to standard compressed sensing but without employing sparsity at all. Instead, we suppose that vectors lie
near the range of a generative model G : R* — R™. Our main theorem is that, if G is L-Lipschitz, then roughly
O(klog L) random Gaussian measurements suffice for an ¢ /£, recovery guarantee. We demonstrate our results
using generative models from published variational autoencoder and generative adversarial networks. Our method
can use 5-10x fewer measurements than Lasso for the same accuracy.

Abstract

Original

Lasso (Wavelet) Lasso (DCT)

DCGAN

Figure 3: Reconstruction results on celebA with m = 500 measurements (of n = 12288 dimensional vector). We
show original images (top row), and reconstructions by Lasso with DCT basis (second row), Lasso with wavelet basis
(third row), and our algorithm (last row).




INKLINGS OF THEORY

w We all love the math behind compressed sensing. Analog for
learned neural networks is so far a challenge.

M Interesting results for NNs with random weights: Manoel, Krzakala,
Mezard, LZ, arXiv:1701.06981; Hand, Voroninsky, arXiv:1705.07576, Huang, Hand,

Heckel, Voroninsky, arXiv:1812.04176 and others.

M Random rotationally invariant weight matrices: Fletcher, Rangan,

arXiv:1706.06549v1, Reeves, arXiv:1710.04580, Gabrié, Manoel, Luneau,
Barbier, Macris, Krzakala, LZ, arXiv:1805.09785

& A lot remains do be done: how many samples/measures
needed; sharper analysis; more insights; weaker assumptions
on the weights; etc.



https://arxiv.org/abs/1701.06981
https://arxiv.org/abs/1705.07576
https://arxiv.org/abs/1812.04176
https://arxiv.org/abs/1710.04580
https://arxiv.org/abs/1805.09785

FOCUS ON SPIKED MATRIX ESTIMATION

Simple examples /noise A(0,4)
® Denoising: B =1+ &
e Compressed sensing: [W)=Av+E AeRW

o Spiked matrix estimation: F(v) = VVT + 5

Aubin, Loureiro, Maillard, Krzakala, LZ, arXiv:1905.12385
The spiked matrix model with generative priors




OUTLINE

e I. Introduction and motivation.

o II. Sparse PCA: Reminder of key facts and presentation of
the methodology.

o III. Spiked matrix estimation with generative priors: Main
results, and two take home messages.
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LET'S PLAY A GAME

e Each pair reports:

> Y--=Zl-j+xl.*)§;’</ j2

Zij ~ N (07 A)
Collect Y;; for every pair ().
Goal: Recover cards (up to

symmetry) purely from the
knowledgeof ¥ — [vo &,




HOW TO SOLVE THIS?

= —xi*x.* + Z.. true values of cards: x* € {-1,0,1}

I ’ l
p
xpca = leading eigenvector of Y estimates x* (up to a sign).

BBP phase transition: A > ,02 Yopr 2 = U

Watkin, Nadal’'94

. K
Baik, BenArous, Pechet’o4 A< p2 ‘XPCA A | > 0




HOW TO SOLVE THIS?

|
— 7xl?kxj>X< + 72 = Imuevaluesolcards e { 101}
P
Z; ~ N(0,A)

i

xpca = leading eigenvector of Y estimates x* (up to a sign).

BBP phase transition: A > ,02

Watkin, Nadal’'94 o)
Baik, BenArous, Pechet’og4 A< 2,

-'; PCA: not optimal error value (does not maximise the number of correctly f

{ assigned cards) ,




BAYESIAN INFERENCEL

P(x)P(Y|z)
L

P(z]Y) =

Posterior distribution:

Ll A)HPX@C)He B )

i<j

Py(x) = (1 — p)8(x) + g [8Cx, — 1) + 6(x, + 1))

Bayes-optimal inference = computation of marginals
(argmax maximizes the number of correctly assigned values,
mean of marginals minimises the mean-squared error).




BAYESIAN INFERENCEL

P(x)P(Y|z)
L

P(z]Y) =

Posterior distribution:

Ll A)HPX@C)He B )

i<j

Py(x) = (1 — p)8(x) + g [8Cx, — 1) + 6(x, + 1))

Bayes-optimal inference = computation of marginals
(argmax maximizes the number of correctly assigned values,
mean of marginals minimises the mean-squared error).

Computationally costly.




HOW SIMPLE TO ANALYZE?

e High-dimensional (non-convex) problem.
e No statistical consistency as p — .

e We want errors including constants.

Outside the box of “traditional” statistics.




RECENT PROGRESS

(by my group and colleagues)

e Solution of spiked matrix and tensor estimation for any noise

distribution, any (separable) prior and rank. (Lesieur, Krzakala,
LZ’15-17)

e Rigorous proof that the replica solution for Bayes-optimal

inference is correct. (Krzakala, Xu, LZ’16 and Barbier, Dia, Macris,
Krzakala, Lesieur, LZ'16)

e Approximate message passing algorithm matching the

predicted performance. (Rangan, Fletcher’12, Matsushita, Tanaka’13,
Deshpande, Montanari'14, Lesieur, Krzakala, LZ'15-17)




RECENT PROGRESS

(by my group and colleagues)

; Solution of spiked matrix and tensor estimation for any noise
- distribution, any (separable) prior and rank. (Lesieur, Krzakala,
L7'15-17)
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e Rigorous proof that the replica solution for Bayes-optimal
inference is correct. (Krzakala, Xu, LZ’16 and Barbier, Dia, Macris,
Krzakala, Lesieur, LZ'16)

e Approximate message passing algorithm matching the

predicted performance. (Rangan, Fletcher’12, Matsushita, Tanaka’13,
Deshpande, Montanari'14, Lesieur, Krzakala, LZ'15-17)




SPIKED MATRIX (TEnsor) MODEL
“GENERALISED GAME”

Bayes-optimal inference for generic prior, output, and rank

H Pout \/(p—l)! Lq )

in| N =Dz Vir Ly
e by

Generate ground-truth x;* from Px. Generate Y;; from Pout.

Goal: Infer x* from Y.




LOW-RANK MATRIX ESTIMATION

e Symmetric
Stochastic Block Model

Matrix completion.

e Non-symmetric

+ (Gaussian mixture clustering.

. - Biclustering.

Submatrix localization. ; ,
Dawid-Skene model for crowdsourcing.

Johnstone’s spiked covariance model.

*

+
Z:2 synchronization.

+

+

Spiked Wi dels. : . :
Disss el e e Restricted Boltzmann machine with

e Tensor random weights.
+ Spiked tensor model
+ Hyper-graph clustering
+ Tensor completion.

Sub-tensor localisation




RECENT PROGRESS

(by my group and colleagues)

e Solution of spiked matrix and tensor estimation for any noise
distribution, any (separable) prior and rank. (Lesieur, Krzakala,
LZ’15-17)

§  Rigorous proof that the replica solution for Bayes-optimal
. inference is correct. (Krzakala, Xu, LZ’16 and Barbier, Dia, Macris,
§ Krzakala, Lesieur, LZ'16)

v

e Approximate message passing algorithm matching the

predicted performance. (Rangan, Fletcher’12, Matsushita, Tanaka’13,
Deshpande, Montanari'14, Lesieur, Krzakala, LZ'15-17)




PERFORMANCE OF THE
BAYES-OPTIMAL ESTIMATOR

Theorem 1: As p —» o

—log Z(Y, A) concentrates around the maximum of ®(mn)

P
) me R

m m m m
CI>(m)=[Ex,W[logZ(A,Ax+ XW>] g x ~ Py
w~ N(0,1)

= replica symmetric free entropy

Z(A,B) auxiliary function defined by: 1
(7 ; A, L P Bx—Ax*/2
(x; A, B) ZAB) x(X)e

Proofs: Krzakala, Xu, LZ, ITW’16, Barbier, Dia, Macris, Krzakala, Lesieur, LZ16 & 18:
Lelarge, Miolane’16; El-Alaoui, Krzakala’17




PERFORMANCE OF THE
BAYES-OPTIMAL ESTIMATOR

Theorem 1: As p —» o

—log Z(Y, A) concentrates around the maximum of ®(mn)
P

) me R
m m [m m
D(m) = [Ex,w[logZ’(A, Ax+ XW>] g x ~ Py

w~ N(0,1)

Theorem 2: mean-squared-error of the Bayes-optimal estimator

MMSE = Ep (x°) — argmax ®(m)

Proofs: Krzakala, Xu, LZ, ITW’16, Barbier, Dia, Macris, Krzakala, Lesieur, LZ16 & 18:
Lelarge, Miolane’16; El-Alaoui, Krzakala’17
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RECENT PROGRESS

(by my group and colleagues)

e Solution of spiked matrix and tensor estimation for any noise

distribution, any (separable) prior and rank. (Lesieur, Krzakala,
LZ’15-17)

e Rigorous proof that the replica solution for Bayes-optimal

inference is correct. (Krzakala, Xu, LZ’16 and Barbier, Dia, Macris,
Krzakala, Lesieur, LZ'16)

' ® Approximate message passing algorithm matching the

predicted performance. (Rangan, Fletcher’12, Matsushita, Tanaka’13,

Deshpande, Montanari'14, Lesieur, Krzakala, LZ'15-17)



APPROXIMATE MESSAGE PASSING

AMP algorithm estimates means and variances of the marginals:

vit! = 0,f(A, BY)

N

1 21 2
. <N ZV;)ait 1

=

f(A,B) auxiliary function defined by:

Fiwd B = Z(i - PP f(A,B) =

Derived in: Rangan, Fletcher’12; Matsushita, Tanaka’13; Javanmard,
Montanari’13; Deshpande, Montanari'i4; Lesieur, Krzakala, LZ’15

Traces back to: Thouless, Anderson, Palmer’76




STATE EVOLUTION

m
O(m) =E,, llog 7 ( -

AS p — 00:

o AMP-MSE given by the local maximum of the free entropy

reached ascent starting from small m/large MSE. (Proofs:
Rangan, Fletcher’12, Javanmard, Montanari’i2, Deshpande, Montanari’14)

e MMSE is given by the global maximum of the free entropy.

>

MMSE = E PX(xz) — argmax d(m)

MSE smp = [EPX(XZ) — Mamp

free entropy

argmax®(m)




What does this theory imply for Sparse PCA?




FROM FIXED POINTS TO PHASE TRANSITIONS
Py(x) = (1 = p)8(x) + p|6(x; — 1) + 6(x; + 1)

Stable branch

0.5 Unstable branch
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ALGORITHMIC INTERPRETATION

o Easy by approximate message passing.
e Impossible information theoretically.

e Hard phase: coming with first order phase transition.
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HARD PHASE

Hard phase: Algorithms “stuck” at low accuracy for exponential time.

Diamond

Metastable diamond
= low accuracy.
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Equilibrium graphite
= high accuracy.
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PHASE DIAGRAM

b

/
j mpossible
//ZM///
.

=
41log p
e PCA threshold optimal known at p = ©O(1). For p = o(1) better

algorithms than PCA (Amini, Wainwright’08; Deshpande, Montanari'i4)

e Algorithmic gap at small p: A, = Apcp = p% A ~,_0

e Proof of computational hardness assuming hardness of planted
clique problem (Berthet, Rigollet’13).



HARD PHASE

Hard phase = spinodal region

of first order phase transitions.

Algorithmic threshold shared

by spectral methods and SDPs.

Conjecture:

AMP achieves (in the large N
limit) the lowest error among
all polynomial algorithms.

Hard phase identified in:

dense planted sub-matrix;
sparse principal component analysis;

Gaussian mixture clustering;
low-rank tensor completion;

stochastic block model
planted constraint satisfaction;

low-density parity check error
correcting codes;

generalised linear regression;
compressed sensing;

learning in binary perceptron;
phase retrieval;

committee machine; ...




Computational Threshold Phenomena for
Average-Case Problems in Statistics, Machine
Learning, and Combinatorial Optimization

STOC 2018 Workshop. June 29, 2018. Los Angeles, CA.

STOC = Symposium of the theory of computing

(Leading conference in computational complexity.)




SPARSE PCA

Facts to recall:

e For p = ®(1) we have no known algorithms with threshold
better than PCA.

e At small p, large gap between information-theoretic and
best-known-algorithmic performance.




OUTLINE

e I. Introduction and motivation.

o II. Sparse PCA: Reminder of key facts and presentation of
the methodology.

o III. Spiked matrix estimation with generative priors: Main
results, and two take home messages.




SPIKED MATRIX MODEL WITH
GENERATIVE PRIORS

1
Y = —vE(*)! + € v € RP i~ N(0,A)

P

¥ = §0(4)(W(4)q0(3)(W(3)q0(2)(W(2)§0(1)(W(1)x*)))) ¥ c Rk

» 1. Theory for w® ;i =1,..., L withrandom iid components.

» II. Approximate message passing reaching optimality (hard
phase vanishes).

» III. Spectral algorithms improving over PCA.




BAYESIAN INFERENCE

i<j

Mutual information: I(Y;v*) = — E,[log Z(Y, A)] + sz

. ey
Main Theorem: lim = it i5.(A q)
g B £v24,20

MMSE = p, — argint ixs(q,)

: ( o v)2 1 . A
where irs(A,q,) = ALEE | +—Im/I|v,v+4/—¢
4A P p—oo q,

Proof: By Guerra interpolation from original to the denoising
problem (Aubin, Loureiro, Maillard, Krzakala, LZ, arXiv:1905.12385).




BAYESIAN INFERENCE

Pl — Z(Yl A)P(v)l_[e 25 (¥ = vivyl\/P)

i<j

Mutual information: I(Y;v*) = — E,[log Z(Y, A)] + sz

: e
Main Theorem: lim = it i5.(A q)
pzi.;___—E__=~ pv>qv

(\MMSE =4 arglnszS(qv

: ( o v)2 1 . A
where irs(A,q,) = ALEE | +—Im/I|v,v+4/—¢
4A P p—oo q,

Proof: By Guerra interpolation from original to the denoising
problem (Aubin, Loureiro, Maillard, Krzakala, LZ, arXiv:1905.12385).




BAYESIAN INFERENCE

Pl 1) =

Z(Y, A
Mutual information: I(Y;v*) = — E,[log Z(Y, A)] + =

: e
Main Theorem: lim — it zRS(A, q)
pzi.;___—E__=~ pv>qv

(v—qv)2
h irs(A, q,) = +
where igs(A. q,) rwmpE

Proof: By Guerra interpolation from original to the denoising
problem (Aubin, Loureiro, Maillard, Krzakala, LZ, arXiv:1905.12385).




PRIOR-MODEL DENOISING

4 Jan Zul/

v — q0(4)(W(4)q0(3)(W(3)gﬂ(2)(W(2)¢(1)(W(1)x*)))) I ég
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Multi-Layer Generalized Linear Estimation

Andre Manoel
Neurospin, CEA
Université Paris-Saclay

Florent Krzakala
LPS ENS, CNRS

PSL, UPMC & Sorbonne Univ.

Marc Mézard

Ecole Normale Supérieure
PSL Research University

Lenka Zdeborova
IPhT, CNRS, CEA
Université Paris-Saclay

ISIT’17

Abstract—We consider the problem of reconstructing a signal
from multi-layered (possibly) non-linear measurements. Using
non-rigorous but standard methods from statistical physics we
present the Multi-Layer Approximate Message Passing (ML-
AMP) algorithm for computing marginal probabilities of the
corresponding estimation problem and derive the associated state
evolution equations to analyze its performance. We also give
the expression of the asymptotic free energy and the minimal
information-theoretically achievable reconstruction error. Finally,
we present some applications of this measurement model for
compressed sensing and perceptron learning with structured
matrices/patterns, and for a simple model of estimation of latent
variables in an auto-encoder.

components of each of these matrices are drawn independently
at random, from a probability distribution Py (») having zero
mean and variance 1/n,. We consider a signal € R~ with
elements z;, ¢ = 1,...,ny sampled independently from a
distribution Px (z;). We then collect n( observations y € R"™°
of the signal x as

y =S WOLS W D wPa)), )

where the so-called activation functions féf), {=1,...,L,are
applied element-wise. These functions can be deterministic or
stochastic and are, in general, non-linear. Assuming f."(2)




PRIOR-MODEL DENOISING

4 Jan Zul/

e Proof for single layer pI‘iOI‘I Barbier, Krzakala, Macris, Miolane, Krzakala,

Multi-Layer Generalized Linear Estimation

Florent Krzakala
LPS ENS, CNRS

Andre Manoel
Neurospin, CEA
Université Paris-Saclay

PSL, UPMC & Sorbonne Univ.

Marc Mézard

Ecole Normale Supérieure
PSL Research University

Lenka Zdeborova
IPhT, CNRS, CEA
Université Paris-Saclay

ISIT’17

Abstract—We consider the problem of reconstructing a signal
from multi-layered (possibly) non-linear measurements. Using
non-rigorous but standard methods from statistical physics we
present the Multi-Layer Approximate Message Passing (ML-
AMP) algorithm for computing marginal probabilities of the
corresponding estimation problem and derive the associated state
evolution equations to analyze its performance. We also give
the expression of the asymptotic free energy and the minimal
information-theoretically achievable reconstruction error. Finally,
we present some applications of this measurement model for
compressed sensing and perceptron learning with structured
matrices/patterns, and for a simple model of estimation of latent
variables in an auto-encoder.

LZ, COLT’18, PNAS’19

e Proof for two—layer pI‘iOI’: Gabrié, Manoel, Luneau, Macris, Krzakala, LZ,

NeurlPS’18.

components of each of these matrices are drawn independently
at random, from a probability distribution Py () having zero
mean and variance 1/n,. We consider a signal € R"~ with
elements z;, ¢« = 1,...,ny sampled independently from a
distribution Px (z;). We then collect ny observations y € R™°
of the signal x as

y=fA WO w® . fPwhzy)), )

where the so-called activation functions fg(f), {=1,...,L,are
applied element-wise. These functions can be deterministic or
stochastic and are, in general, non-linear. Assuming f."(2)




EXAMPLE OF A RESULT

1
K= — () -k vk e RP i ~ NV(0,4)
\/]; x* € R* Xl-* ~ H(0,1)
v = sien( W) W e RPXk W ~ A (0,1/p)
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APPROXIMATE MESSAGE PASSING

Input: Y € RP*P and W € RP*k:
Initialize to zero: (g, v,B,, A,)=".
Initialize with: v'=1 = N(0,02),2'=" = N'(0,0?),and /7! =1, ¢71 =1, t = 1.
repeat
Spiked layer:

Tat

1pey) ot—1 t L (1ot)12
AV and A, = 55 [Iv'][21,.

Generative layer:
Vi= g (1el) I, w'= ZWaz' - Vg™ and g' = fou (B}, A}, 0" V'),
A'=|gll3le and ~' = WTgh+ A'E
Update of the estimated marginals:
Vit = £, (B!, AL Wt VY and ¢ =0pf,(B!, Al W VT,
72 = f.(4t, AY) and ¢t =0, f.(yt AY),
t=1t+1.
until Convergence.
Output: v, z.

Similar to D-AMP of Metzler, Maleki, Baraniuk’ 14




STATE EVOLUTION

2
— 1 A
i (A,q):(p" %) +—Im/|v,v+4/—¢
B ' 4A P p—o dq

e Aslong as irq(g,) has a unique minimiser, AMP matches the
optimal performance as p — o
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TAKE-HOME MESSAGE I

e Sparse prior: At small p, large gap between information-
theoretic and best-known-algorithmic performance.

e Generative prior: No gap between information-theoretic and
best-known-algorithmic performance.




SPECTRAL ALGORITHMS

1
r= vy i/ vk e RP Ej~ H(0.4)
\/]3 x* € R* Xl-* ~ A0, 1)
V¥ = sign(Wx*) W e RPXk W ~ A (0,1/p)

4o

2

« AMP worksfor A < 1 4

e PCA works for A < 1

e

Better spectral algorithms? i(




OPTIMAL AMONG SPECTRAL ALGORITHMS

e Strategy: Linearize approximate message passing or belief
propagation (from Krzakala, Mossel, Moore, Neeman, Sly, LZ, Zhang, PNAS13)

e Resulting conjecture: Optimal spectral algorithm LAMP uses
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FOR RANDOM MATRIX THEORY LOVERS

Y Lv*(v*)T + & v e RP 5o A
= X2~ (1)
W e Rk W, = /(0. Lip)

i

® Theorem: The leading eigenvector of I correlates with signal
ifTA<]+4+a

r=ww'|r-/pl,

® Open problem for any other ¢, with v* = @(Wx*)




LAMP IMPROVES PCA WITHOUT TRAINING ON DATA

PCA (up) versus LAMP (bottom) on spiked matrix estimation

A—=001L011 2 10

: —

i %V*(V*)T + & i~ N(0,A)

LAMP: I =K, [Y — \/]_9 Ip] Kp: empirical covariance



TAKE-HOME MESSAGE 11

e Sparse prior: For p = ®(1) no known algorithms with
threshold better than PCA.

e Generative prior: spectral LAMP algorithm is better than
PCA. Has the same threshold as AMP, conjectured optimal.

—\/D Ip_

(w7




CONCLUSION

e Generative models provide generic way to exploit structure
of data for better signal processing.

e Spiked matrix estimation with generative priors:

» Tights analysis for generative neural network with random
weights.

» Absence of algorithmic gaps, contrasting with sparse-PCA.

» Improved generic-purpose spectral algorithm: LAMP.
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