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Beamforming and MPDR in Array Processing

Narrow-band signal model for an array with N sensors.

y(ωc , n) = V(ωc , k0)x0[n] +
D−1∑
l=1

V(ωc , kl)xl [n] + Z[n], n = 1, .., L

ωc is the carrier frequency, kl is the source direction, and V(ωc , k) is the
array manifold and is the response of the array to a source at direction k.

Far-Field model: V(ωc , k) = [1, e−jωcτ1(k), . . . , e−jωcτN−1(k)] and a
function of array geometry.

Uniform Linear Array (ULA): Sensors placed on a line with a unform
spacing of d .

e−jωcτm(kl) = e−jωlm, with ωm = 2π d
λ cos(θl) where θl is the elevation

angle. Common to use d
λ = 1

2
So array manifold can be denoted by V(ωl).
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Assumptions

y(n) =
D−1∑
l=0

V(ωl)xl [n] + Z[n]

= [V0,V1, . . . ,VD−1]


x0[n]
x1[n]

...
xD−1[n]

+ Z[n]

= Vx[n] + Z[n]

where V ∈ CN×D , and x[n] ∈ CD×1.

Assumptions: E (x[n]) = 0D×1, E (x[n]ZH [n]) = 0D×N and temporally
uncorrelated.



Assumptions

y(n) =
D−1∑
l=0

V(ωl)xl [n] + Z[n]

= [V0,V1, . . . ,VD−1]


x0[n]
x1[n]

...
xD−1[n]

+ Z[n]

= Vx[n] + Z[n]

where V ∈ CN×D , and x[n] ∈ CD×1.

Assumptions: E (x[n]) = 0D×1, E (x[n]ZH [n]) = 0D×N and temporally
uncorrelated.



Assumptions

y(n) =
D−1∑
l=0

V(ωl)xl [n] + Z[n]

= [V0,V1, . . . ,VD−1]


x0[n]
x1[n]

...
xD−1[n]

+ Z[n]

= Vx[n] + Z[n]

where V ∈ CN×D , and x[n] ∈ CD×1.

Assumptions: E (x[n]) = 0D×1, E (x[n]ZH [n]) = 0D×N and temporally
uncorrelated.



Covariance Matrices of interest

Source Covariance matrix: Rx = E (x[n]xH [n]) where Rx ∈ CD×D , and
the diagonal elements are p0, p1, ..., pD−1, the source powers

For uncorrelated sources Rx is a diagonal matrix, i.e.
Rx = diag(p0, p1, . . . , pD−1).

Data Covariance Matrix

Ry = E (y[n]yH [n]) = Rs + σ2
z I = VRxVH + σ2

z I

Ry ∈ CN×N , Rs ∈ CN×N , Rx ∈ CD×D , and V ∈ CN×D

For ULA and uncorrelated sources, Ry is a Toeplitz matrix.
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Sparse Signal Recovery (SSR)

I y is a N × 1 measurement vector and x is M × 1 desired vector
which is sparse with k non zero entries.

I Φ is N ×M dictionary matrix where M >> N.

For array processing,
Φ is obtained by employing a grid, i.e. lth column is V(ωl).
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Multiple Measurement Vectors (MMV)

I Multiple measurements: L measurements

I Common Sparsity Profile: k nonzero rows



Beamforming(BF)

Pick a direction of interest ωs , and select the linear combining weights W
such that r [n] = W Hy[n] contains mostly the signal from direction ωs

Conventional beamforming: W = V(ωs) and the power in direction ωs is
E (|r [n]|2) = V(ωs)HRyV(ωs).

If you scan the spatial angles and look for the direction with most power,
it has similarity to the search step of OMP.

BF with Null constraints: Incorporate constraints, usually nulls in certain
directions, in the BF design.
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ULA and Beamforming in Pictures

Figure: ULA on the z-axis Figure: BF pattern(polar plot, N = 11)



Minimum power distortionless response (MPDR)
beamformer

Pick direction of interest ωs

Distortionless constraint on beamformer W : W HVs = 1, where
Vs = V(ωs).

Minimum Power objective: Choose W to minimize E (|W H |y[n]|2)

MPDR BF design

min
W

W HRyW subject to W HVs = 1.

Solution: Wmpdr = 1
VH

s R−1
y Vs

R−1
y Vs
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MPDR Spatial Power Spectrum

Wmpdr = 1
VH

s R−1
y Vs

R−1
y Vs

Benefit:

I Ry is easier to determine making it computationally attractive

Ry ≈
1

L

L−1∑
n=1

y[n]yH [n]

I Same Ry is needed if you change your mind on direction of interest.
Can deal with multiple signals of interest with considerable ease.

Spatial Power Spectrum using MPDR:

Pmpdr (ωs) = E (|W H
mpdry[n]|2) = W H

mpdrRyWmpdr =
1

VH
s R−1

y Vs
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MPDR intuition

W Hy[n] = W HVsxs [n] + W H I[n]

= xs [n]︸︷︷︸
distortionless constraint

+q[n], where q[n] = W H I[n]

Minimum Power objective: Choose W to minimize E (|W H |y[n]|2), the
power at the output of the beamformer

If the interference is uncorrelated with the desired signal, then
minimization of E (|q[n]|2) is achieved, i.e. interference is minimized.

Signal of interest has been isolated and interference minimized (SINR
maximized)

If the interference is correlated with the desired source, we have
cancellation and the desired source is not preserved.
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MPDR: Uncorrelated sources

Figure: nsignals = 10 and nsensors = 12



MPDR: Beamformer for uncorrelated sources

Figure: nsignals = 10 and nsensors = 12



MPDR: correlated sources

Figure: nsignals = 10, two correlated, and nsensors = 12



Sparse Bayesian Learning

y = Φx + v

SBL uses a Bayesian framework with a separable prior p(x) = Πp(xi ).

Gaussian Scale Mixtures (GSM)

p(xi ) =

∫
p(xi |γi )p(γi )dγi =

∫
N(xi ; 0, γi )p(γi )dγi

Theorem
A density p(x) which is symmetric with respect to the origin, can be
represented by a GSM iff p(

√
x) is completely monotonic on (0,∞).

Most of the interesting priors over x can be represented in this GSM
form. [Palmer et al., 2006]

Definition
A function f (x) is completely monotonic on (a, b) if
(−1)nf (n)(x) ≥ 0, n = 0, 1, .., where f (n)(x) denotes the nth derivative
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GSM Hierarchy Viewpoint

γ︸︷︷︸
p(γ)

→ X ∼ N(x ; 0, γ)

Alternatively
X =

√
γG

where G ∼ N(g ; 0, 1) and γ and G are independent.

Kurtosis: Note

E (X 2) = E (γ)E (G 2) = E (γ), and E (X 4) = E (γ2)E (G 4) = 3E (γ2)

Kurt(X ) = E (X 4)− 3(E (X 2))2 = 3E (γ2)− 3(E (γ))2

= 3(E (γ2)− (E (γ))2) = 3Var(γ) ≥ 0
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Examples of Gaussian Scale Mixtures

Laplacian density

p(x ;β) =
1

2β
exp(−|x |

β
)

Scale mixing density: p(γ) = 1
2β2 exp(− 1

2β2 γ), γ ≥ 0.

Student-t Distribution

p(x ; a, b) =
baΓ(a + 1/2)

(2π)0.5Γ(a)

1

(b + x2/2)a+1/2

Scale mixing density: Inverse-Gamma Distribution.

Generalized Gaussian

p(x ; p) =
1

2Γ(1 + 1
p )

e−|x|
p

Scale mixing density: Positive alpha stable density of order p/2.
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Two Options for Estimation with GSM priors

MAP Estimation (Type I)

Evidence Maximization (Type II)
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MAP Estimation Framework (Type I)

Problem Statement

x̂ = arg max
x

p(x |y) = arg max
x

p(y |x)p(x) = arg max[log p(y |x)+log p(x)]

Can derive a general version that includes many past reweighted
algorithms using a generalized-t distribution in one setting1

1Giri, R., and Rao, B. D. (2016). Type I and Type II Bayesian Methods for
Sparse Signal Recovery Using Scale Mixtures. IEEE Trans. Signal Processing,
64(13), 3418-3428.
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Evidence Maximization (Type II)

Find a MAP estimate of γ, i.e. γ̂ = arg max p(γ|y).
Estimate of the posterior distribution for x using estimated γ̂;
i.e.p(x |y ; γ̂).

This leads to Sparse Bayesian Learning (SBL).
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Evidence Maximization Framework

Potential Advantages

I Averaging over x leads to fewer minima in p(γ|y) =
∫
p(γ, x |y)dx .

I γ can tie several parameters, leading to fewer parameters. For
MMV, a single γi for row i .

I Maximizing the true posterior mass over the subspaces spanned by
non zero indexes instead of looking for the mode.
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Sparse Bayesian Learning

y = Ax + v

Solving for MAP estimate of γ

γ̂ = arg max
γ

p(γ|y) = arg max
γ

p(y |γ)p(γ)

What is p(y |γ)
Given γ, x is Gaussian with mean zero and Covariance matrix Γ with
Γ = diag(γ), i.e. p(x |γ) = N(x ; 0, Γ) = ΠN(xi ; 0, γi ).

Then p(y |γ) = N(y ; 0,Σy ), where Σy = σ2I + AΓAT ,

p(y |γ) =
1√

(2π)N |Σy |
e−

1
2 y

T Σ−1
y y
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Solving for the optimal γ

γ̂ = arg max
γ

p(γ|y) = arg max
γ

p(y |γ)p(γ)

= arg min
γ

log |Σy |+ yTΣ−1
y y − 2

∑
i

log p(γi )

= arg min
γ

log |Σy |+ Trace Σ−1
y yyT − 2

∑
i

log p(γi )

where, Σy = σ2I + AΓAT and Γ = diag(γ)

For some of the discussion, we will ignore the prior on γ, i.e. p(γ). This
can be viewed as a non-informative prior on γ or γ as deterministic but
unknown.
Given the separable nature of the prior, the prior is easy to incorporate.

For MMV

γ̂ = arg min
γ

log |Σy |+ Trace Σ−1
y R̂y −

2

L

∑
i

log p(γi )

where R̂y = 1
L

∑L
n=1 y[n]yT [n]
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Algorithmic Variants

I Fixed Point iteration based on setting the derivative of the objective
function to zero (Tipping)

I Expectation-Maximization (EM) Algorithm

I Sequential search for the significant γ’s (Tipping and Faul)

I Majorization-Minimization based approach (Wipf and Nagarajan)

I Reweighted `1 and `2 algorithms (Wipf and Nagarajan)

I Approximate Message Passing (AlShoukairi, Schniter and Rao)



Computing Posterior p(x |y ; γ̂)

y = Ax + v

Now because of our convenient GSM choice, posterior can be easily
computed, i.e, p(x |y ; γ̂) = N(µx ,Σx) where,

µx = E [x |y ; γ̂] = Γ̂ATΣ−1
y y = Γ̂AT (σ2I + AΓ̂AT )−1y

Σx̃ = Cov [x |y ; γ̂] = Γ̂− Γ̂ATΣ−1
y AΓ̂ = Γ̂− Γ̂AT (σ2I + AΓ̂AT )−1AΓ̂

µx can be used as a point estimate.
Sparsity is achieved by having many of the γi ’s have zero value.

The conditional mean and variance computation constitute a LMMSE
BF!
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EM algorithm: Updating γ

Treating (y, x) as complete data and vector x as hidden variable.

log p(y , x , γ) = log p(y |x) + log p(x |γ) + log p(γ)

E step

Q(γ|γk) = Ex|y ;γk [log p(y |x) + log p(x |γ) + log p(γ)]

M step

γk+1 = argmaxγQ(γ|γk) = argmaxγEx|y ;γk [log p(x |γ) + log p(γ)]

= argminγEx|y ;γk [
M∑
i=1

(
x2
i

2γi
+

1

2
log γi

)
− log p(γ)]

The optimization involves M scalar optimization problems of the form

J(γl) =
E (x2

l |y, γk)

2γl
+

1

2
log γl − log p(γl)
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Scalar Optimization

J(γl) =
E (x2

l |y, γk)

2γl
+

1

2
log γl − log p(γl)

Note that E (x2
l |y, γk) = µ

(k)
x (l)2 + Σ

(k)
x̃ (l , l)

Non-informative prior results in an objective function

J(γl) =
E (x2

l |y, γk)

2γl
+

1

2
log γl

Update equation

γk+1
l = E (x2

l |y, γk) = µ(k)
x (l)2 + Σ

(k)
x̃ (l , l)

Source powers updated in an iterated manner
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MPDR view of SBL

I When p(xn) = N (0, pn) the MPDR + MMSE steps are equivalent
to the LMMSE step in the EM SBL and the two algorithm are
equivalent.

I More general priors can be used within the MPDR framework. The
EM-SBL has a closed form solution for the GSM prior only.
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MPDR versus SBL

MPDR:

1. y[n]→ R̂y = 1
L

∑L
n=1 y[n]yH [n]

2. MPDR BF using R̂y , i.e. Wmpdr = 1
VH

s R̂−1
y Vs

R̂−1
y Vs

3. MPDR spatial power spectrum Pmpdr (ωs) = 1
VH

s R̂−1
y Vs

SBL

1. Guess power of sources γ and employ uncorrelated model for
correlation matrix Σy = ΦΓΦT + λI, where Γ = diag(γ).

2. MPDR BF using Σy , i.e. Wmpdr = 1
VH

s Σ−1
y Vs

Σ−1
y Vs

3. Apply BF to data y[n], use BF output to compute new source
power estimate, and update Σy

4. Repeat steps 2 and 3 till convergence
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Toeplitz Matrix Approximation: ULA

Ry = Rs + σ2I and Rs is low rank and Toeplitz for uncorrelated sources

Theorem: A low rank Toeplitz R, rank D, is uniquely represented as
R =

∑D
l=1 λlV(ωl)VH(ωl)

Σy =
∑M

l=1 γlV(ωl)VH(ωl) + λI in SBL has the appropriate structure.

ML estimate: As L→∞, KL(p∗||p) is minimized, where p is the model
assumed by SBL, i.e. p(y ; Σy ), and p∗ is the actual data density, i.e.
p(y ; Ry ).

Uncorrelated sources: then true model and SBL model is the same and
SBL is finding a ML estimate of a Toeplitz matrix.

Correlated sources: True model Ry is no longer Toeplitz and SBL is
finding the best Toeplitz matrix in the KL sense.

The uncorrelated source model allows SBL to be largely unaffected by
correlated sources.
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Uncorrelated sources: then true model and SBL model is the same and
SBL is finding a ML estimate of a Toeplitz matrix.

Correlated sources: True model Ry is no longer Toeplitz and SBL is
finding the best Toeplitz matrix in the KL sense.

The uncorrelated source model allows SBL to be largely unaffected by
correlated sources.
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MPDR: Uncorrelated sources

Figure: nsignals = 10 and nsensors = 12



MPDR: correlated sources

Figure: nsignals = 10, two correlated, and nsensors = 12



Correlated signals with MUSIC

Figure: MUSIC: nsignals = 10 (Last two correlated), nsensors = 12



SBL to the rescue!

Figure: SBL: nsignals = 10 (Last two correlated), nsensors = 12



Beam Space processing and Nested Arrays

Consider yna[n] = Sy[n], where S is user chosen and SP×N , with P ≤ N.

Options

I Could be a random matrix as in CS

I Could be chosen to cover a region in space

I Could be used to thin the array (low complexity sensor array)
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Inspiration from Sister Field: Array Signal Processing

Nested Arrays: Structure & Properties

I A nested array with N antennas has a filled difference set with
O(N2) elements

I Drastically increases the spatial degrees of freedom

I For source localization, this results in estimating location of more
sources than sensors!
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DoA Estimation with Nested Arrays2

With Nested Arrays, we can transform an order-N covariance matrix into

order-N
2+2N

4 Toeplitz matrix

Transformation:

Consider as an example N = 4, nested array sensor positions: {1, 2, 3, 6}


R0 R−1 R−2 R−5

R1 R0 R−1 R−4

R2 R1 R0 R−3

R5 R4 R3 R0

→


R0 R−1 R−2 R−3 R−4 R−5

R1 R0 R−1 R−2 R−3 R−4

R2 R1 R0 R−1 R−2 R−3

R3 R2 R1 R0 R−1 R−2

R4 R3 R2 R1 R0 R−1

R5 R4 R3 R2 R1 R0


Number of DoAs that can be estimated is 5 > 3 (for ULA)

2Pal, P., and Vaidyanathan, P. P. (2010). Nested arrays: A novel approach
to array processing with enhanced degrees of freedom. IEEE Transactions on
Signal Processing, 58(8), 4167-4181.
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SBL and Nested Arrays

Simply apply SBL3 to yna[n], where yna[n] = Sy[n]

Actual covariance SRySH , and SBL covariance model is SΣySH , where
Σy is Toeplitz

The ML estimation minimizes the KL distance between the actual density
and model density assumed by SBL and so tries to best match the two
covariance matrices.

Figure: Nested array with 12 sensors

3Nannuru, S., and Gerstoft, P. (2019, May). 2D Beamforming on Sparse
Arrays with Sparse Bayesian Learning. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(pp. 4355-4359).
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Nested Arrays: SBL robustness

Figure: MUSIC Figure: SBL



Nested Arrays: SBL efficiency

Figure: nsens = 12, nsignals = 25, SNR = 10dB, nsnapshots = 500



Summary

I Established a connection between SBL and MPDR beamforming.

I Provides better insight into effective BF
I Enables an approach to deal with more intractable inference

problems

I Discussed Uniform Linear Arrays and Toeplitz Matrix Approximation
property of SBL

I Shown effectiveness of SBL for Nested Arrays to identify more
sources than sensors
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