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Machine Learning (aka AI) Successes

• First Generation (‘90-’00): the backend
– e.g., fraud detection, search, supply-chain management

• Second Generation (‘00-’10): the human side
– e.g., recommendation systems, commerce, social media

• Third Generation (‘10-now): pattern recognition
– e.g., speech recognition, computer vision, translation
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AI (aka Machine Learning) Successes

• First Generation (‘90-’00): the backend
– e.g., fraud detection, search, supply-chain management

• Second Generation (‘00-’10): the human side
– e.g., recommendation systems, commerce, social media

• Third Generation (‘10-now): pattern recognition
– e.g., speech recognition, computer vision, translation

• Fourth Generation (emerging): markets
– not just one agent making a decision or sequence of 

decisions
– but a huge interconnected web of data, agents, decisions
– many new challenges!
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• It’s not just a matter of a threshold
• Real-world decisions with consequences

– counterfactuals, provenance, relevance, dialog
• Sets of decisions across a network

– false-discovery rate (instead of precision/recall/accuracy)
• Sets of decisions across a network over time

– streaming, asynchronous decisions (cf. Zrnic, Ramdas & Jordan, 
Asynchronous online testing of multiple hypotheses, arXiv, 2019)

• Decisions when there is scarcity and competition
– need for an economic perspective

• The current (human-imitative) focus on pattern 
recognition and reinforcement learning is limiting



Consider Classical Recommendation 
Systems

• A record is kept of each customer’s purchases
• Customers are “similar” if they buy similar sets of 

items
• Items are “similar” are they are bought together by 

multiple customers



Consider Classical Recommendation 
Systems

• A record is kept of each customer’s purchases
• Customers are “similar” if they buy similar sets of 

items
• Items are “similar” are they are bought together by 

multiple customers
• Recommendations are made on the basis of these 

similarities
• These systems have become a commodity



Multiple Decisions with Competition

• Suppose that recommending a certain movie is a good 
business decision (e.g., because it’s very popular)

• Is it OK to recommend the same movie to everyone?
• Is it OK to recommend the same book to everyone?
• Is it OK to recommend the same restaurant to 

everyone?
• Is it OK to recommend the same street to every driver?
• Is it OK to recommend the same stock purchase to 

everyone?



The Alternative: Create a Market

• A two-way market between consumers and producers
– based on recommendation systems on both sides

• E.g., diners are one side of the market, and restaurants 
on the other side

• E.g., drivers are one side of the market, and street 
segments on the other side

• This isn’t just classical microeconomics; the use of 
recommendation systems is key
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AI = Data + Algorithms + Markets

• Computers are currently gathering huge amounts of 
data, for and about humans, to be fed into learning 
algorithms

– often the goal is to learn to imitate humans
– a related goal is to provide personalized services to humans
– but there’s a lot of guessing going on about what people want



AI = Data + Algorithms + Markets

• Computers are currently gathering huge amounts of 
data, for and about humans, to be fed into learning 
algorithms

– often the goal is to learn to imitate humans
– a related goal is to provide personalized services to humans
– but there’s a lot of guessing going on about what people want

• Services are best provided in the context of a market; 
market design can eliminate much of the guesswork

– when data flows in a market, the underlying system can learn 
from that data, so that the market provides better services

– fairness arises not from providing the same service to 
everyone, but by allowing individual utilities to be expressed



Social Consequences

• By creating a market based on the data flows, new jobs 
are created!

• So here’s a way that AI can be a job creator, and not 
(mostly) a job killer

• This can be done in a wide range of other domains, not 
just music

– entertainment
– information services
– personal services

• The markets-meets-learning approach deals with other 
problems that a pure learning approach does not

– e.g., recommendations when there is scarcity
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Example: Music in the Data Age

• More people are making music than ever before, 
placing it on sites such as SoundCloud

• More people are listening to music than ever before
• But there is no economic value being exchanged 

between producers and consumers
• And, not surprisingly, most people who make music 

cannot do it as their full-time job
– i.e., human happiness is being left on the table
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Example: Music in the Data Age

• More people are making music than ever before, 
placing it on sites such as SoundCloud

• More people are listening to music than ever before
• But there is no economic value being exchanged 

between producers and consumers
• And, not surprisingly, most people who make music 

cannot do it as their full-time job
– i.e., human happiness is being left on the table

• There do exist companies who make money off of this; 
they stream data from SoundCloud to listeners, and 
they make their money … from advertising!  L
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The Alternative: Create a Market

• Use data to provide a dashboard to musicians, letting 
them learn where their audience is

• The musician can give shows where they have an 
audience

• And they can make offers to their fans
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The Alternative: Create a Market

• Use data to provide a dashboard to musicians, letting 
them learn where their audience is

• The musician can give shows where they have an 
audience

• And they can make offers to their fans
• I.e., consumers and producers become linked, and 

value flows: a market is created
– the company that creates this market profits simply by taking 

a cut from the transactions

• In the US, the company United Masters is doing 
precisely this; see www.unitedmasters.com

University of California, Berkeley

http://www.xxx.com/


Perspectives on AI

• The classical “human-imitative” perspective
– cf. AI in the movies, interactive home robotics

• The “intelligence augmentation” (IA) perspective
– cf. search engines, recommendation systems, natural language 

translation
– the system need not be intelligent itself, but it reveals patterns 

that humans can make use of
• The “intelligent infrastructure” (II) perspective

– cf. transportation, intelligent dwellings, urban planning
– large-scale, distributed collections of data flows and loosely-

coupled decisions

M. Jordan (2018), “Artificial Intelligence: The Revolution Hasn’t Happened Yet”, 
Medium.



Near-Term Challenges in II
• Error control for multiple decisions 
• Systems that create markets
• Designing systems that can provide meaningful, calibrated notions of their 

uncertainty
• Managing cloud-edge interactions
• Designing systems that can find abstractions quickly
• Provenance in systems that learn and predict
• Designing systems that can explain their decisions
• Finding causes and performing causal reasoning
• Systems that pursue long-term goals, and actively collect data in service 

of those goals
• Achieving real-time performance goals
• Achieving fairness and diversity
• Robustness in the face of unexpected situations
• Robustness in the face of adversaries
• Sharing data among individuals and organizations
• Protecting privacy and data ownership



Algorithmic and Theoretical Progress

• Nonconvex optimization
– avoidance of saddle points
– rates that have dimension dependence
– acceleration, dynamical systems and lower bounds
– statistical guarantees from optimization guarantees

• Computationally-efficient sampling
– nonconvex functions
– nonreversible MCMC
– links to optimization

• Market design
– approach to saddle points
– recommendations and two-way markets



Part I: How to Escape Saddle Points 
Efficiently 

with Chi Jin, Praneeth Netrapalli, Rong Ge, 
and Sham Kakade



Nonconvex Optimization in Machine Learning

• Bad local minima used to be thought of as the main 
problem on the optimization side of machine 
learning

• But many machine learning architectures either 
have no local minima (see list later), or stochastic 
gradient seems to have no trouble (eventually) 
finding global optima

• But saddle points abound in these architectures, 
and they cause the learning curve to flatten out, 
perhaps (nearly) indefinitely



The Importance of Saddle Points 

•  How to escape? 
–  need to have a negative eigenvalue that’s strictly negative 

•  How to escape efficiently? 
–  in high dimensions how do we find the direction of escape? 
–  should we expect exponential complexity in dimension?   



A Few Facts 

•  Gradient descent will asymptotically avoid saddle 
points (Lee, Simchowitz, Jordan & Recht, 2017) 

•  Gradient descent can take exponential time to 
escape saddle points (Du, Jin, Lee, Jordan, & Singh, 
2017) 

•  Stochastic gradient descent can escape saddle 
points in polynomial time (Ge, Huang, Jin & Yuan, 
2015) 
–  but that’s still not an explanation for its practical success 

•  Can we prove a stronger theorem? 

 



Optimization

Consider problem:
min
x∈Rd

f (x)

Gradient Descent (GD):

xt+1 = xt − η∇f (xt).

Convex: converges to global minimum; dimension-free iterations.



Convergence to FOSP

Function f (·) is `-smooth (or gradient Lipschitz)

∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.

Point x is an ε-first-order stationary point (ε-FOSP) if

‖∇f (x)‖ ≤ ε

Theorem [GD Converges to FOSP (Nesterov, 1998)]
For `-smooth function, GD with η = 1/` finds ε-FOSP in iterations:

2`(f (x0)− f ?)

ε2

*Number of iterations is dimension free.



Nonconvex Optimization

Non-convex: converges to Stationary Point (SP) ∇f (x) = 0.

SP : local min / local max / saddle points

Many applications: no spurious local min (see full list later).



Definitions and Algorithm

Function f (·) is ρ-Hessian Lipschitz if

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Point x is an ε-second-order stationary point (ε-SOSP) if

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε

Algorithm Perturbed Gradient Descent (PGD)

1. for t = 0, 1, . . . do

2. if perturbation condition holds then

3. xt ← xt + ξt , ξt uniformly ∼ B0(r)

4. xt+1 ← xt − η∇f (xt)

Adds perturbation when ‖∇f (xt)‖ ≤ ε; no more than once per T steps.
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Main Result

Theorem [PGD Converges to SOSP]
For `-smooth and ρ-Hessian Lipschitz function f , PGD with η = O(1/`)
and proper choice of r ,T w.h.p. finds ε-SOSP in iterations:

Õ

(
`(f (x0)− f ?)

ε2

)

*Dimension dependence in iteration is log4(d) (almost dimension free).

GD(Nesterov 1998) PGD(This Work)

Assumptions `-grad-Lip `-grad-Lip + ρ-Hessian-Lip

Guarantees ε-FOSP ε-SOSP

Iterations 2`(f (x0)− f ?)/ε2 Õ(`(f (x0)− f ?)/ε2)



Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size η = O(1/`).

Around saddle point, stuck region forms a non-flat “pancake” shape.

w

Key Observation: although we don’t know its shape, we know it’s thin!
(Based on an analysis of two nearly coupled sequences)



How Fast Can We Go?

• Important role of lower bounds (Nemirovski & Yudin)
– strip away inessential aspects of the problem to reveal 

fundamentals

• The acceleration phenomenon (Nesterov)
– achieve the lower bounds
– second-order dynamics
– a conceptual mystery

• Our perspective: it’s essential to go to continuous 
time
– the notion of ”acceleration” requires a continuum topology to 

support it



Part II: Variational, Hamiltonian and
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and 
Michael Betancourt 



Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)
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Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology
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Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology



Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0



Mysteries

• Why can’t we discretize the dynamics when we are 
using exponentially fast clocks?

• What happens when we arrive at a clock speed that 
we can discretize?

• How do we discretize once it’s possible?



 Towards A Symplectic Perspective 
• We’ve discussed discretization of Lagrangian-based

dynamics
• Discretization of Lagrangian dynamics is often fragile

and requires small step sizes
• We can build more robust solutions by taking a Legendre 

transform and considering a Hamiltonian formalism:



Symplectic Integration of Bregman 
Hamiltonian 



Symplectic vs Nesterov
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Part III: Acceleration and Saddle Points

with Chi Jin and Praneeth Netrapalli



Hamiltonian Analysis
! ⋅ between #$ and #$ + &$

! #$ + '
() &$ ( decreases

AGD step

&$*' = 0 Move in ±&$ direction

Not too nonconvex Too nonconvex
(Negative curvature exploitation)

&$ large &$ small

Enough decrease 
in a single step

Do an 
amortized 

analysis



Convergence Result

PAGD Converges to SOSP Faster (Jin et al. 2017)

For `-gradient Lipschitz and ρ-Hessian Lipschitz function f , PAGD with

proper choice of η, θ, r ,T , γ, s w.h.p. finds ε-SOSP in iterations:

Õ

(
`1/2ρ1/4(f (x0)− f ?)

ε7/4

)

Strongly Convex Nonconvex (SOSP)

Assumptions
`-grad-Lip &

α-str-convex

`-grad-Lip &

ρ-Hessian-Lip

(Perturbed) GD Õ(`/α) Õ(∆f · `/ε2)

(Perturbed) AGD Õ(
√
`/α) Õ(∆f · `

1
2 ρ

1
4 /ε

7
4 )

Condition κ `/α `/
√
ρε

Improvement
√
κ

√
κ

14 / 14 Michael Jordan AGD Escape Saddle Points Faster than GD



Part IV: Acceleration and Stochastics

with Xiang Cheng, Niladri Chatterji and Peter 
Bartlett
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• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped
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Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped

diffusions
• Inspired by our work on acceleration, can we accelerate 

underdamped diffusions?



Overdamped Langevin MCMC

Described by the Stochastic Differential Equation (SDE):
!"# = −∇' "# !( + 2!+#

where ' " : -. → - and +# is standard Brownian motion.
The stationary distribution is 0∗ " ∝ exp ' "

Corresponding Markov Chain Monte Carlo Algorithm 
(MCMC):

6" 789 : = 6"7: − ∇' 6"7: + 2;<7
where ; is the step-size and <7 ∼ >(0, B.×.)



Guarantees under Convexity

Assuming ! " is #-smooth and $-strongly convex:

Dalalyan’14: Guarantees in Total Variation
If  % ≥ ' (

)* then, +,(. / , .∗) ≤ 4

Durmus & Moulines’16: Guarantees in 2-Wasserstein

If  % ≥ ' (
)* then, 56(. / , .∗) ≤ 4

Cheng and Bartlett’17: Guarantees in KL divergence

If  % ≥ ' (
)* then, KL(. / , .∗) ≤ 4



Underdamped Langevin Diffusion

Described by the second-order equation:

!"# = %#!&
!%# = −(%#!& + *∇, "# !& + 2(* !.#

The stationary distribution is /∗ ", % ∝ exp −, " − |7|88
9:

Intuitively, "# is the position and %# is the velocity

∇, "# is the force and ( is the drag coefficient



Quadratic Improvement

Let !(#) denote the distribution of %&#', %)#' . Assume + & is
strongly convex

Cheng, Chatterji, Bartlett, Jordan ’17:

If . ≥ 0 1
2 then 34 ! # , !∗ ≤ 7

Compare with Durmus & Moulines ’16 (Overdamped)

If . ≥ 0 1
28 then 34 ! # , !∗ ≤ 7



Proof Idea: Reflection Coupling

Tricky to prove continuous-time process contracts. Consider 
two processes,

!"# = −∇' "# !( + 2 !+#,
!-# = −∇' -# !( + 2 !+#.

where "/ ∼ 1/ and -/ ∼ 1∗. Couple these through Brownian motion

!+#. = 34×4 −
2 ⋅ "# − -# "# − -# 7

|"# − -#|99
!+#,

“reflection along line separating the two processes”



Reduction to One Dimension

By Itô’s Lemma we can monitor the evolution of the separation distance 

!|#$ − &$|' = − #$ − &$
|#$ − &$|'

, ∇+ #$ − ∇+ &$ !, + 2 2!/$0

‘Drift’ ’1-d random walk’

Two cases are possible

1. If |#$ − &$|' ≤ 2 then we have strong convexity; the drift helps.

2. If |#$ − &$|' ≥ 2 then the drift hurts us, but Brownian motion helps stick*.

*Under a clever choice of Lyapunov function.

Rates not exponential in ! as we have a 1-! random walk



Part VI: Acceleration and Sampling
With Yi-An Ma, Niladri Chatterji, and Xiang Cheng



Acceleration of SDEs

• The underdamped Langevin stochastic differential 
equation is Nesterov acceleration on the manifold of 
probability distributions, with respect to the KL 
divergence (Ma, et al., to appear)



Sampling vs. Optimization: The Tortoise 
and the Hare

• Folk knowledge:  Sampling is slow, while optimization is 
fast
– but sampling provides inferences, while optimization only 

provides point estimates
• But there hasn’t been a clear theoretical analysis that 

establishes this folk knowledge as true
• Is it really true?



Part V: Population Risk and Empirical Risk

with Chi Jin and Lydia Liu



Population Risk vs Empirical Risk

Well-behaved population risk ⇒ rough empirical risk

I Even when R is smooth, R̂n can be non-smooth and may even have
many additional local minima (ReLU deep networks).

I Typically ‖R − R̂n‖∞ ≤ O(1/
√
n) by empirical process results.

Can we finds local min of R given only access to the function value R̂n?



Our Contribution

Our answer: Yes! Our SGD approach finds ε−SOSP of F if ν ≤ ε1.5/d ,
which is optimal among all polynomial queries algorithms.

Complete characterization of error ν vs accuracy ε and dimension d .



Part VII: Market Design Meets Gradient-
Based Learning

with Lydia Liu, Horia Mania and Eric Mazumdar



Lydia Liu Horia Mania

Competing Bandits in 
Matching Markets



• MABs offer a natural platform to understand exploration / 
exploitation trade-offs 

1

2

3
.

Multi-Armed Bandits



Buyers / Demand Sellers / SupplyThe two sides of the 
market must be matched. 
But many markets have 
constraints:
capacity, preferences, etc.  

Examples:  
• Residents and hospitals
• High school admissions 
• Restaurants and costumers
• Labor markets
• House allocations with 

existing tenants
• Many others

Matching Markets



Buyers / Demand Sellers / Supply

1 > 3 > 2

Suppose we have a market in which the participants have 
preferences:

2 > 3 > 1

1 > 2 > 3

1 > 2 > 3

3 > 1 > 2

2 > 1 > 3
We want to find an equilibrium: no two participants would 
prefer to be matched with each other over their current 
match.   
Such a matching is called stable.   

Matching Markets



Buyers / Demand Sellers / Supply

1 > 3 > 2

Suppose we have a market in which the participants have 
preferences:

2 > 3 > 1

1 > 2 > 3

1 > 2 > 3

3 > 1 > 2

2 > 1 > 3

Gale and Shapley introduced this problem in 1962 and proposed 
a celebrated algorithm that always finds a stable match

In this algorithm one side of the market iteratively makes 
proposals to the other side

Matching Markets



What if the participants in the market do not know their  
preferences a priori, but observe noisy utilities through 
repeated interactions?

Matching Markets Meet Learning

Now the participants have an exploration/exploitation problem, 
in the context of other participants



1
.

2
.

3
.

0

Competing Agents



• We conceive of a bandit market: agents on one side, arms on 
the other side.  

Agents get noisy rewards when they pull arms.  

Arms have preferences over agents (these 
preferences can also express agents’ skill 
levels)

When multiple agents pull the same arm only 
the most preferred agent gets a reward.

Bandit Markets



Then it is natural to define the regret of agent i up to time n 
as:

Mean reward of 
stable match Reward at time t

If there are multiple stable matches, a bit more care is 
needed. See our paper.

Minimizing this regret is natural. It says that agents should 
expect rewards as good as their stable match in hindsight. 

Bandit Markets



Gale-Shapley upper confidence bounds (GS-UCB):
• Agents rank arms according to upper confidence bounds 

for the mean rewards. 
• Agents submit rankings to a matching platform. 
• The platform uses these rankings to run the Gale-Shapley 

algorithm to match agents and arms.
• Agents receive rewards and update upper confidence 

bounds.
• Repeat. 

Regret-Minimizing Algorithm



Theorem (informal): If there are N agents and K arms and 
GS-UCB is run, the regret of agent i satisfies 

Reward gap of possibly other agents.

• In other words, if the bear decides to explore more, the human 
might have higher regret. 

• See paper for refinements of this bound and further discussion of 
exploration-exploitation trade-offs in this setting. 

• Finally, we note that GS-UCB is incentive compatible. No single 
agent has an incentive to deviate from the method. 

Theorem



Eric Mazumdar

Finding Nash Equilibria (and only 
Nash Equilibria) with gradients



Why zero-sum games?
• A lot of recent interest in finding the local Nash equilibria of zero-sum 

continuous games.
• e.g. Adversarial Learning, training GANs, robust reinforcement learning

Zero-Sum Games

In each of these settings the goal is find local Nash equilibria of the 
game.



Issues with gradient-play in 2-player zero-sum games

Not all locally 
asymptotically 
stable eq. are 

differential Nash 
eq.

Properties of Gradient Dynamics in Games

Game Type
Avoid a 

subset of the 
DNE

Converge to  
Limit Cycles

Converge to 
Non-Nash 

LASE

Zero-Sum 
Game

Simultaneous Gradient 
descent (simGD) has 
two main issues:

• Convergence to limit 
cycles.

• Convergence to non-
Nash fixed points.

These can be common!

• Every saddle point of the 
function  that does not satisfy 
the specific conditions of a 
local Nash eq. is a candidate 
non-Nash LASE.

2
6



Recent algorithms do not solve these problems

2
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On finding local Nash equilibria (and only local Nash equilibria) in zero-sum continuous games. E. Mazumdar, M. Jordan, S. Sastry NeurIPS 
2019 (submitted)  

Behaviors in Zero-sum Games

Algorithm
Avoid some 
local Nash 

eq.

Converge to 
non-Nash 

eq.
Oscillate 

around eq.
Converge to 
limit cycles

Gradient 
play

Symplectic 
Gradient 

Adjustment
Consensus 

Optimization



New algorithm for gradient-based learning in zero-sum 
games:

Algorithm
Avoid some 
local Nash 

eq.
Converge to 

non-Nash eq.
Oscillate 

around eq.
Converge to 
limit cycles

Local 
Symplectic 
Elimination

2
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Local Symplectic Surgery:

On finding local Nash equilibria (and only local Nash equilibria) in zero-sum continuous games. E. Mazumdar, M. Jordan, S. Sastry NeurIPS 
2019 (submitted)  

By cancelling out the symplectic part of the vector field around critical 
points, the only equilibria to which this method can converge are the local 

Nash equilibria of the game. 



29On finding local Nash equilibria (and only local Nash equilibria) in zero-sum continuous games. E. Mazumdar, M. Jordan, S. Sastry NeurIPS 
2019 (submitted)  

GAN experiments on a test for mode-collapse

LSS
(~50,000 iters)

simGD
(~200,000 iters)

Consensus opt.
(~100,000 iters)

Curvature exploitation
(~15,000 iters)

Ground truth is a mixture of 16 Gaussians used to test for mode collapse, with covariance 0.005 I2

Generator and discriminator are Tanh neural networks with 4 hidden layers of 100 neurons each. 
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On finding local Nash equilibria (and only local Nash equilibria) in zero-sum continuous games. E. Mazumdar, M. Jordan, S. Sastry NeurIPS 
2019 (submitted)  

LSS seems to converge to better solutions

LSS
(~50,000 

iters)

simGD
(~200,000 

iters)

Consensus 
(~100,000 

iters)

Curvature
(~15,000 iters)

From an initialization where 
simGD quickly converges to an 

incorrect distribution, LSS 
recovers the ground truth.

• Consensus optimization, without 
careful hyper-parameter tuning 
gives rise to new non-Nash 
equilibria, which results in worse 
performance.

• Local curvature exploitation is 
hard to implement in high 
dimensional settings due to the 
need to find eigenvalue/eigenvector 
pairs of the diagonal blocks of J at 
each iteration
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Convergent Algorithms for Learning in Continuous Games. E. Mazumdar, M. Jordan, S. Sastry (Work in progress)  

The algorithm can be extended to general-sum games where it converges in LQ games where gradient 
descent cycles.

Simultaneous Gradient Play Our Algorithm

This approach can be extended to general non-
cooperative games:

Matrix of off-diagonal blocks of J



What is Local Optimality in Nonconvex-Nonconcave

Minimax Optimization?
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Minmax Optimization

Multi-agent decision making:

or

Framework:

min
x∈Rd

max
y∈Rd

f (x, y)

where f is nonconvex in x and nonconcave in y.
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Algorithms and Questions

Gradient Descent Ascent (GDA):

 xt+1 = xt − ηx∇f (xt).

yt+1 = yt + ηy∇f (yt).
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Fundamental questions:

• What “optimal” points should we find?

• What are the points that GDA converges to? (if it converges)
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Nash Equilibrium

Point (x?, y?) is a Nash equilibrium if:

• y? is a maximum of f (x?, ·); x? is a minimum of f (·, y?).

Convex-concave case: GDA converges to a Nash equilibrium.
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Local Nash Equilibrium

Nonconvex-nonconcave case: It’s NP-hard to find Nash equilibrium.

Find a local Nash equilibrium—point (x?, y?) such that

• y? is a local maximum of f (x?, ·); x? is a local minimum of f (·, y?).

Are local Nash equilibria what we want in GAN/adversarial training?
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Simultaneous vs. Sequential

simultaneous

vs.

sequential

Nash equilibria come from simultaneous games—both act simultaneously.

GAN/adversarial training are sequential games—one leader, one follower.

For nonconvex-nonconcave f , which player acts first is crucial, since in general

min
x∈Rd

max
y∈Rd

f (x, y) 6= max
y∈Rd

min
x∈Rd

f (x, y)
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Minimax Point (Stackelberg Equilibrium)

Point (x?, y?) is a Minimax Point (or Stackelberg Equilibrium) if:

• y? is a maximum of f (x?, ·);

• x? is a minimum of φ(·) where φ(x) = maxy f (x, y).

[Leader always prepares for the best follower.]

Minimax points always exist even for nonconvex-nonconcave functions.



A New Notion of Local Optimality

[This Work] Point (x?, y?) is a local minimax point if:

• y? is a local maximum of f (x?, ·);

• ∃ε0 > 0, so that x? is a local minimum of gε(·) for any ε ≤ ε0,

where gε(x) = maxy:‖y−y?‖≤ε f (x, y).

I First proper definition of local optimality for sequential games.

I Local minimax points enjoy various natural and good properties.
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Limit Points of GDA

[DP18, MR18]: The stable limit points of GDA need not to be local Nash!

Theorem [This Work]

When learning rate ηy/ηx →∞, the stable limit points of GDA are exactly

local minimax points up to some degenerate points.
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Local

Maximin

Local

Nash



Limit Points of GDA

[DP18, MR18]: The stable limit points of GDA need not to be local Nash!

Theorem [This Work]

When learning rate ηy/ηx →∞, the stable limit points of GDA are exactly

local minimax points up to some degenerate points.

γ-GDA

Local

Minimax

(∞-GDA)

Local

Maximin

Local

Nash



• Given a possibly infinite sequence of decisions over 
time can we guarantee anytime control of the false-
discovery rate (FDR) in a fully asynchronous, online 
fashion?

Foster-Stine ’08
Aharoni-Rosset ‘14
Javanmard-Montanari ’16

Tijana
Zrnic

Aaditya
Ramdas

Multiple Coupled Decisions Over Time
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P8P9

P1

P2 P3

P5 P6

True nulls Non-Nulls

discoveriesfalse 
discoveries

False discovery proportion

Want low false discovery rate 

Want high
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Run 10,000 
different,

independent
A/B tests

9,900 true
nulls

100 non-
nulls

type-1 error rate (per test) = 0.05

495 false 
discoveries

80 true 
discoveries

FDP = 495/575!

power (per test) = 0.80



Many enterprises run thousands
of different (independent) A/B tests over time

Time

vs.

vs.

vs.

vs.

vs.

Color

Size

Orientation

Style

Logo
Problem!

Decision Rule:



What we will do instead:

Time

vs.

vs.

vs.

vs.

vs.

Color

Size

Orientation

Style

Logo

How do we
set each error

target to 
control FDR
at any time?

Decision Rule:
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Online FDR control : high-level picture

Error budget 
for first test

Error budget for 
second test

Tests use wealth

Discoveries 
earn wealth

Error budget
is data-dependent

Infinite process



Executive Summary

• ML (AI) has come of age
• But it is far from being a solid engineering discipline that 

can yield robust, scalable solutions to modern data-
analytic problems

• There are many hard problems involving uncertainty, 
inference, decision-making, robustness and scale that 
are far from being solved
– not to mention economic, social and legal issues




