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The Problem

• Your primary school child has been assigned a nasty summer homework

• He needs to estimate rainfall over the summer break 

• He is desperate because the summer vacation is at stake 
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The Problem
Approach 1

July 10 July 20 July 30 August 9 August 19 August 29

• Put a bucket in the back garden and record rainfall at regular intervals 
(e.g. every 10 days record rainfall and empty bucket)
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The Problem
Approach 1

July 10 July 20 July 30 August 9 August 19 August 29

• Advantage: Easy estimation

• Disadvantage: inefficient (need to check and empty the bucket regularly 
even during the dry season and so…no summer vacations!)
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• Only record the day when the bucket is full and then empty it

The Problem
Approach 2

July 18 July 28 September 2
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The Problem
Approach 2
• Advantage: Very efficient (we can go on holiday in August!)

• Disadvantage: estimation of rainfall over the period is more complicated

July 18 July 28 September 2
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Sampling

• These two approaches represent two very different ways to sample a 
continuous phenomenon

• Approach 1 is what we engineers do and is equivalent to the traditional 
amplitude-based uniform sampling

𝑡 𝑠
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Sampling

• Approach 2 maps analogue information into a time sequence and is used 
by nature (e.g., integrate-and-fire neurons)

Time Encoding 
Machine
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Motivation
Time encoding appears in nature, as a mechanism used by neurons to represent 
sensory information as a sequence of action potentials, allowing them to process 
information very efficiently.

Input signal
Action potentials
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Time-Based Sampling
• Acquisition systems inspired by time-based sampling, such as event-

based vision sensors, are emerging in a variety of new scenarios (e.g. 
see Toby Delbruck web page)

Videos taken from Inivation.com (see also Toby Delbruck web page) 
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Time-encoding machines

Integrate-and-fire System

y Threshold 
Detector

Integrator

−𝐶்

𝐶்

𝑡ଵ 𝑡ଶ 𝑡ଷ 𝑡ସ

𝑡

spike triggered reset
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Time-encoding machines

Comparator System

𝑡ଵ 𝑡ଶ 𝑡ଷ 𝑡ସ𝑡ହ 𝑡଺ 𝑡଻

𝑦(𝑡)

• At the crossing times, ௡ ௡ hence ௡ ௡ .

𝑥(𝑡)
𝑡ଵ, 𝑡ଶ,…, 𝑡௡

+
−

Zero-crossing 
detector

𝑔(𝑡)

𝑇௦ =
1

𝑓௦
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Reconstruction from time-encoded information
• Given the retrieved non-uniform samples 𝑥 𝑡ଵ , 𝑥 𝑡ଶ , … , 𝑥(𝑡௡) can we reconstruct 

𝑥(𝑡)?

• This is a classical problem in non-uniform sampling

• Assume that 𝑥(𝑡) belongs to a shift-invariant space (e.g., 𝑥(𝑡) is bandlimited, 
𝑥 𝑡 = ∑ 𝑐௞𝜑 𝑡 − 𝑘 

௞ ) then, if the density of samples D ≥ 1, perfect reconstruction 
is possible1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• Key result:1 if the density of samples then perfect reconstruction 
can be using an iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001

July 18 July 28 September 2
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Reconstruction from time-encoded information

• Key result:1 if the density of samples then perfect reconstruction 
can be using an iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001

July 18 July 28 September 2
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information
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Reconstruction from time-encoded information
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Reconstruction from time-encoded information

• The iterative approach proposed by Aldroubi and Grochenig1

1A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

• Key result:    if the density of samples then ௧ೕ
form a basis

• Key Issue 1: In the case of uniform sampling the density is . This 
means that current TEMs are less energy efficient than uniform sampling!

• Key Issue 2: Cannot sample sparse (non-bandlimited) signals with the 
current methods.



31

• For integrate-and-fire machines exact reconstruction proved here: A. A. Lazar and 
L. T. Toth, “Time encoding and perfect recovery of bandlimited signals”, ICASSP 
2003  

Reconstruction from time-encoded information

yf
+

−

Threshold 
Detector

Integrator

−𝐶்

𝐶்

𝑡଴ 𝑡ଵ 𝑡ଶ 𝑡ଷ

𝑡

See also: Gauntier-Vetterli-2014, Adam et al 2019,
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Sparse Sampling - Signals 

• We consider sparse parametric signals (i.e., signals with finite rate of 
innovation2). 

• Key issue is how to retrieve the free parameters of these signals for time-based 
information

2Vetterli Marziliano Blu, Sampling Signals with Finite Rate of Innovation, IEEE Trans. on Signal Processing, June 2002
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Sparse Sampling - Acquisition 

• In sparse sampling, the acquisition device is used to ‘spread the innovation’

• Reconstruction process is non-linear

• These two ingredients are necessary to time-encode sparse non-bandlimited 
signals
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Sparse Sampling 

• We leverage two main ideas from sampling sparse signals with finite rate of 
innovations:

– The sampling kernels can reproduce polynomials or exponentials 

– Reconstruction is achieved using Prony’s method



Reproduction of Polynomials 



Reproduction of Polynomials 



Reproduction of Exponentials 



From Samples to Signals 



From Samples to Signals 



Sampling a stream of Diracs
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• The quantity 

௠ ௞
௝௠ఠబఛ೘

௞ ௞
௠௄

௞ୀଵ
௄
௞ୀଵ

is a sum of exponentials

• Retrieving the locations ௞ and the amplitudes ௞ from ௠ ௠ୀଵ
௅ is a classical 

problem in spectral estimation  and was first solved by Gaspard de Prony in 
1795.3

• Given the pairs ௞ ௞ then ௞ ௞ ଴.

Prony’s Method

3P. Stoica and R. Moses. Spectral Analysis of Signals. 2005.
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Our approach for time decoding of signals
Signals
• We consider sparse continuous-time signals like streams of diracs, stream of 

pulses or piecewise constant signals

Sensing Systems
• We filter before using a TEM

𝜑(−𝑡)

Non-bandlimited 
input signal

Compact-support filter
(polynomial/exponential spline)

TEM

Time Encoding Machine
(zero-crossing detector/

integrate-and-fire system)

Timing Information

𝑡ଵ 𝑡ଶ 𝑡ଷ 𝑡ସ
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Our approach for time decoding of signals
• Reconstruction of depends on the

– sampling kernel

– the density of time instants ௡

• We achieve a sufficient density of output samples by imposing conditions on:

– The frequency of the comparator's sinusoidal signal (crossing TEM ).

– The trigger mark of the integrator (integrate-and-re TEM ).
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Our approach for time encoding of signals

Comparator System

• At the crossing times, ௡ ௡ hence ௡ ௡ .

• Moreover:

௡ ௡
 

  ௡

 𝜑(−𝑡)
𝑥(𝑡)

𝑡ଵ, 𝑡ଶ,…, 𝑡௡

+

−

Zero-crossing 
detector

𝑔(𝑡)

𝑇௦ =
1

𝑓௦

𝑦(𝑡)
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Sampling Kernels (B-splines)



46

Sampling Kernels (B-splines)
Polynomial Splines
• Linear combinations of uniform shifts of B-splines reproduce polynomial 

because the ‘knots’ overlap and ‘compensate’ each other. 

• Key insight: in the case of non-uniform shifts, reproduction of 
polynomials is still possible locally in ‘knot-free’ regions
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Sampling Kernels (B-splines)

Key insight: in the case of non-
uniform shifts, reproduction of 
polynomials is still possible 
locally in ‘knot-free’ regions

Sketch of the argument:

• Each ‘knot-free’ piece of a 
spline of order is a 
polynomial of degree 

• overlapping splines can 
reproduce polynomial of 
maximum degree in a 
‘knot-free’ region ଵ ଶ
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௠,௡
ିఈ೘௧  

 

௡ఢℤ

• The first-order E-spline of support L is defined as:

𝜑 𝑡 =

𝑒ఈభିఈబ

𝛼ଵ − 𝛼଴
𝒆ି𝜶𝟎𝒕 +

𝑒ିఈభାఈబ

𝛼଴ − 𝛼ଵ
𝒆ି𝜶𝟏𝒕,    −𝐿 ≤ 𝑡 ≤

−𝐿

2
1

𝛼଴ − 𝛼ଵ
𝒆ି𝜶𝟎𝒕 +

1

𝛼ଵ − 𝛼଴
𝒆ି𝜶𝟏𝒕,        

−𝐿

2
≤ 𝑡 ≤ 0

0,                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• This function can reproduce exponentials ି𝜶𝟎𝒕 and ି𝜶𝟏𝒕. 

Sampling Kernels (E-splines)

• Exponential Splines (E-splines) can reproduce exponentials
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• Reproduction of exponentials using uniform shifts of the first-order E-spline:

௠,௡
ିఈ೘௧  

 

௡ఢℤ

Sampling Kernels 

𝑡[𝑠]

∆𝑡 = 1 ∆𝑡 = 1

0 1 2 3 4 5 6 7 8
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• Reproduction of exponentials can be achieved locally in , using at least two 
non-uniform shifts of the E-spline:

௠,௡ ௡
ିఈ೘௧

ே

௡ୀଵ

• The kernels should be continuous within that local interval .

Sampling Kernels

𝑡ଵ 𝑡ଶ𝑡ௗଵ 𝑡ௗଶ

𝐼

𝑡ௗଵ - discontinuity of 𝜑 𝑡 − 𝑡ଵ

𝑡ௗଶ - discontinuity of 𝜑 𝑡 − 𝑡ଶ
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Comparator System – One Input Spike

+ 𝜑(−𝑡)
𝑥(𝑡)

𝑡ଵ, 𝑡ଶ,…, 𝑡௡

+
−

Zero-crossing 
detector

𝑔(𝑡)

𝑇௦ =
1

𝑓௦

𝑦(𝑡)
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Comparator System – One Input Spike

ଶ ଶ

ଵ ଵ
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Comparator System – One Input Spike

We assume:

• Amplitude of the Dirac ଵ

• The sampling kernel and its non-uniform shifts reproduce ௝ఠబ௧and ି௝ఠబ௧

and ଴
గ

௅
where is the support of . 

• The frequency of the sinusoidal signal satisfies ௦
ହ

ଶ௅
.
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Comparator System – One Input Spike

Under these assumptions:

• The first two timing locations satisfy  ଵ ଶ ଵ ଵ
௅

ଶ
. This means that       

ଵ ଶ
௅

ଶ ଵ

• This is useful since in the interval ଶ
௅

ଶ ଵ , the shifted kernels ଵ

and ଶ have no knots (so can reproduce exponentials or polynomials)
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Comparator System – One Input Spike

• We know we can find coefficients ௠,௡
ூ such that: 

௠,௡
ூ

௡
௝ఠ೘௧ଶ

௡ୀଵ for 

• We then have:

𝑠଴ = ෍ 𝑐଴,௡
ூ 𝑦 𝑡௡ = ෍ 𝑐଴,௡

ூ 𝑥 𝑡 , 𝜑 𝑡 − 𝑡௡ = න 𝑥(𝑡)
ஶ

ିஶ

෍ 𝑐଴,௡
ூ 𝜑 𝑡 − 𝑡௡ = 𝑥ଵ𝑒௝ఠబఛభ, 

ଶ

௡ୀଵ

ଶ

௡ୀଵ

 

ଶ

௡ୀଵ

𝑠ଵ = ෍ 𝑐ଵ,௡
ூ 𝑦 𝑡௡ = ෍ 𝑐ଵ,௡

ூ 𝑥 𝑡 , 𝜑 𝑡 − 𝑡௡ = න 𝑥(𝑡)
ஶ

ିஶ

෍ 𝑐ଵ,௡
ூ 𝜑 𝑡 − 𝑡௡ = 𝑥ଵ𝑒௝ఠభఛభ, 

ଶ

௡ୀଵ

ଶ

௡ୀଵ

 

ଶ

௡ୀଵ

• Then ଵ
ଵ

௝ ఠభିఠబ

௦భ

௦మ
and ଵ ଴

୨ఠబఛభ
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Comparator System – One Input Spike

• We use Bolzano’s intermediate value theorem to show that 𝑡ଵ, 𝑡ଶ ∈ [𝜏ଵ, 𝜏ଵ +
௅

ଶ
]

• Denote with ℎ 𝑡 = 𝑔 𝑡 − 𝑦 𝑡 , assume 𝑔 𝜏ଵ > 0 and 𝑥ଵ > 0 then ℎ 𝜏ଵ > 0 and 

ℎ 𝜏ଵ + ೞ்

ଶ
= 𝑔 𝜏ଵ + ೞ்

ଶ
− 𝑦 𝜏ଵ + ೞ்

ଶ
< 0, this implies ℎ 𝑡ଵ = 0 for some 𝑡ଵ ∈ [𝜏ଵ, 𝜏ଵ +

்

ଶ
]

• Similarly 𝑡ଶ ∈ [𝜏ଵ + ೞ்

ଶ
, 𝜏ଵ +

ହ ೞ்

ସ
]

• Since 𝑇௦ =
ଵ

௙ೞ
<

ଶ௅

ହ
then 𝑡ଵ, 𝑡ଶ ∈ [𝜏ଵ, 𝜏ଵ +

௅

ଶ
]
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Comparator System – Example
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Summary on Sparse Sampling with Comparator  

• We can sample and perfectly reconstruct non-bandlimited signals  👍

• Number of time samples still large (time information provided also when 
signal is zero)  👎

• Use the new framework but with the Integrate-and-Fire TEM 👍👍👍
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Integrate and Fire TEM  

• The sampling kernel and its non-uniform shifts reproduce ௝ఠబ௧and ି௝ఠబ௧

and ଴
గ

௅
where is the support of . 

• What is the minimum value of the trigger mark ் that would allow the perfect 
reconstruction of stream of pulses or piecewise constant signals?
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Integrate and Fire TEM  

• Given the times ଵ ଶ ௡, the amplitude values are

yn = y(tn) = CT =
t n

t n− 1

f (τ )dτ =
t n

t n− 1

x(α)ϕ (α t )dαdτ .
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Integrate and Fire TEM  

• Equivalently the output samples can be expressed as: 

y(tn) = x(t ), (ϕ qθn)(t tn− 1) ,

where θn = tn tn− 1 and qθn(t ) is defined as:

qθn(t ) =
1, 0 t θn,

0, otherwise.
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Integrate and Fire TEM  

• The equivalent kernel ఏ೙ ௡ିଵ is still able to reproduce 
exponentials 

• So trigger mark must guarantee enough samples in a short interval

• Proposition:  when ்
஺೘೔೙

ସఠబ
మ

ఠబ௅

ଶ
then ଵ ଶ ଷ ଵ ଵ

௅

ଶ
and 

perfect reconstruction is possible
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Integrate and Fire – Reconstruction of Pulses  
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Integrate and Fire – Reconstruction of Pulses  
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Reconstruction with Arbitrary Kernels
• Sufficient conditions for perfect reconstruction may appear restrictive, but they 

can be relaxed with minimum loss in reconstruction quality
• The proposed reconstruction framework can be used with any acquisition device
• If reproduction of exponentials is not satisfied use LS methods to find the 

coefficients ௠,௡
ூ that achieve best fit:

f (t ), ϕ̃ (t tn ) =
N

k = 1

cI
m ,k ϕ̃ (t t k ), ϕ̃ (t tn ) , so that

N

n = 1

cI
m ,n ϕ̃ (t tn ) ej ωm t ,
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Integrate and Fire – Piecewise Constant Signals

This is equivalent to the way a pixel operates 
in neuromorphic video cameras



67

Integrate and Fire – Piecewise Constant Signals

Filtered Stream of Diracs
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Integrate and Fire – Piecewise Constant Signals

If the distance between discontinuities is on average with being 
the sampling period in uniform sparse sampling4 then our time encoding framework 
is more efficient than uniform sampling (lower sampling density) 👍👍👍

4P.L. Dragotti, M. Vetterli and T. Blu, Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon 
meets Strang-Fix, IEEE Trans. on Signal Processing, vol.55 (5), pp. 1741-1757, May 2007. 
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Spike-Based Processing 
• Sensing efficiently is only half of the story

• Once a signal has been converted into spikes, how do we process it efficiently?

• Creating an AI can be five times worse for the planet than a car (resource 
NewScientist) 

• How do we compute fundamental transforms (e.g., Fourier or Wavelet Transforms)

• Can we find the sparse representation of a signal using spiking neuron models? 
(Some results based on spike rates4,5)

• Deep learning with spiking signals?6

4P.T.P. Tang, T.-H. Lin, and M. Davies, “Sparse coding by spiking neural networks: Convergence theory and 
computational results” arXiv:1705.05475 , 2017.
5C. Pehlevan, “A Spiking Neural Network with Local Learning Rules Derived From Nonnegative Similarity 
Matching”, ICASSP 2019.
6E. Neftci, “Surrogate Gradient Learning in Spiking Neural Networks,”, arXiv:1901.09948, 2019.
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• Event-based sensing and processing is an emerging and exciting research 
area!

• Topic at the intersection of signal processing, computational neuroscience 
and machine learning

• Proved sufficient conditions for the exact reconstruction of classes of sparse 
signals from time-based information

• Many open questions on both the sensing and the processing front

– Multi-dimensional case

– Adaptive acquisition

– L1 optimization strategies

– Learning sparsifying representations for spiking signals

Conclusions
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