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The Problem

* Your primary school child has been assigned a nasty summer homework
* He needs to estimate rainfall over the summer break

* He is desperate because the summer vacation is at stake
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The Problem
Approach 1

« Put a bucket in the back garden and record rainfall at regular intervals
(e.g. every 10 days record rainfall and empty bucket)

LISk
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The Problem

Approach 1
- Advantage: Easy estimation

« Disadvantage: inefficient (need to check and empty the bucket regularly
even during the dry season and so...no summer vacations!)

o
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The Problem

Approach 2
* Only record the day when the bucket is full and then empty it

July 18 July 28 September 2
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The Problem

Approach 2
« Advantage: Very efficient (we can go on holiday in August!)

« Disadvantage: estimation of rainfall over the period is more complicated

July 18 July 28 September 2
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Sampling

* These two approaches represent two very different ways to sample a
continuous phenomenon

- Approach 1 is what we engineers do and is equivalent to the traditional
amplitude-based uniform sampling

D
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Sampling

x(1)

Approach 2 maps analogue information into a time sequence and is used
by nature (e.g., integrate-and-fire neurons)

Time Encoding _
Machine
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Motivation

Time encoding appears in nature, as a mechanism used by neurons to represent
sensory information as a sequence of action potentials, allowing them to process
information very efficiently.

|‘ [ .f'\l

Action potentials
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Time-Based Sampling

* Acquisition systems inspired by time-based sampling, such as event-
based vision sensors, are emerging in a variety of new scenarios (e.g.
see Toby Delbruck web page)

Videos taken from Inivation.com (see also Toby Delbruck web page)

—
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Time-encoding machines

Integrate-and-fire System

ﬂk
Cr
x(t) Y(®) | Threshold t
Integrator Detector | ! ty |ta|ts ta
X ! _CT
spike triggered reset

__________________________________________
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Time-encoding machines

Comparator System

—— Input signal y(t)
——Comparator's reference signal
* Qutput non-uniform times

/ero-crossin
x(t) + g

+ detector
o0 '\
«—>
1

TS=7
N

« At the crossing times, x(t,) — g(t,,) = 0 hence x(t,)) = g(t,).
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Reconstruction from time-encoded information

«  Given the retrieved non-uniform samples x(t;), x(t,), ..., x(t,;) can we reconstruct
x(t)?

« This is a classical problem in non-uniform sampling

- Assume that x(t) belongs to a shift-invariant space (e.g., x(t) is bandlimited,
x(t) = Yy cr(t — k)) then, if the density of samples D > 1, perfect reconstruction
is possible’

A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001

#
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Reconstruction from time-encoded information

- Key result:" if the density of samples D > 1 then perfect reconstruction
can be using an iterative approach proposed by Aldroubi and Grochenig’

July 18 July 28 September 2

A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

- Key result:" if the density of samples D > 1 then perfect reconstruction
can be using an iterative approach proposed by Aldroubi and Grochenig’

July 18 July 28 September 2

A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Input Function f(t)
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A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Non-uniform Sampling
2 T T T
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A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001

d



Imperial College
London

Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Piecewise Constant Interpolation
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A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001




Imperial College
London

Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Projecting onto V' (¢) - Iteration: 1
2 T T T T T T T
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A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001

d



Imperial College
London

Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Non-uniform Sampling

2

A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Non-uniform Sampling
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A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Piecewise Constant Interpolation
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A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001




Imperial College
London

Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Projecting onto V (¢) - Iteration: 2
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A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Projecting onto V' (y) - Iteration: 1 Projecting onto V (y) - Iteration: 2

A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Projecting onto V() - Iteration: 2
2 T T T T T T T

0 2 < 6 8 10 12 14 16
i

A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Projecting onto V (¢) - Iteration: 3

2

t

A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Projecting onto V() - Iteration: 5
2 T T T T T T T
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A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

- The iterative approach proposed by Aldroubi and Grochenig’

Projecting onto V() - Iteration: 15
2 T T T T T T T
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A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces”
SIAM Review 2001
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Reconstruction from time-encoded information

- Key result: if the density of samples D > 1 then Ktj(t) form a basis

« Key Issue 1: In the case of uniform sampling the density is D = 1. This
means that current TEMSs are less energy efficient than uniform sampling!

«  Key Issue 2: Cannot sample sparse (non-bandlimited) signals with the
current methods.
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Reconstruction from time-encoded information

For integrate-and-fire machines exact reconstruction proved here: A. A. Lazar and

L. T. Toth, “Time encoding and perfect recovery of bandlimited signals”, ICASSP
2003

x(t f(t t
(©) n © Integrator y(©) Threshold
+ Detector to |t1 [t2 |t3

v
\ Al

See also: Gauntier-Vetterli-2014, Adam et al 2019,
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Sparse Sampling - Signals

« We consider sparse parametric signals (i.e., signals with finite rate of
innovation?).

« Key issue is how to retrieve the free parameters of these signals for time-based

information ‘

]

Vetterli Marziliano Blu, Sampling Signals with Finite Rate of Innovation, IEEE Trans. on Signal Processing, June 2002

2
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Sparse Sampling - Acquisition

* In sparse sampling, the acquisition device is used to ‘spread the innovation’
» Reconstruction process is non-linear

« These two ingredients are necessary to time-encode sparse non-bandlimited
signals

O =g >T<

Yy=<x(0), (VT-n)>

Acquisition Device

—
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Sparse Sampling

«  We leverage two main ideas from sampling sparse signals with finite rate of
innovations:

— The sampling kernels can reproduce polynomials or exponentials
— Reconstruction is achieved using Prony’s method

O =g >T<

Yy=<x(0), (VT-n)>

Acquisition Device

d
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Reproduction of Polynomials

3 3r 3
2 2r 2
1 1 1 —_— 1
/ v \/\/ \/\,\’ \x\ v N \
-1 0 1 T t Y t
1 1 St \«\A‘/ //
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6 4 2 0 2 4 6 -6 4 2 0 2 4 6 6 4 2 0 2 4 6
ﬁl(t) CO,n = (1717171717171) Cl,n = (_37_27_170717273)

The linear spline reproduces polynomials up to degree L=1: >~ cm nB1(t —n) =t™ m = 0,1, for a proper

choice of coefficients ¢y, (in this example n = —3, —2,..., 1, 2, 3).

Notice: cpm,n = (@(t — n),t"™) where ¢(t) is biorthogonal to ¢ (t): (@(t), p(t — n)) = dn.
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Reproduction of Polynomials

201

-20

con ~ (8.7,3.7,0.7,—0.333,0.7,3.7,8.7) ¢z, ~ (=24, —6,—0.001,0,0.001, 6, 24)

The cubic spline reproduces polynomials up to degree L=3: >~ cm nfB3(t —n) =t™ m =0,1,2,3.
|
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Reproduction of Exponentials

Here the E-spline is of second order and reproduces the exponential e®0?, e®1t: with
oo = —0.06 and o1 = 0.5.
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From Samples to Signals

» Compute a linear combination of the samples: s, = > ¢y nyn for
some choice of coefficients ¢, , that reproduce polynomials or
exponentials

» Because of linearity of inner product, we have that
Sm — Zn Cman-yn
> o Cman(x(t),e(t/T —n)) m=0,1,..,L

— <X(t)7 zn Cm,ngp(t/T — n)> m=20,1,..., L.

» Given the proper choice of coefficients, we have that
Zn Cm,ngp(t/T o n) — ejwmt/T
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From Samples to Signals

Then
Sm = chm,n)/n

= (x(t), 22, Cmnp(t/ T = n))

= [T x(t)emtdt, m=0,1,..,L
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Sampling a stream of Diracs

» Assume x(t) is a stream of K Diracs on the interval of size N:
x(t) = S35 5 xkd(t — ), tx € [0, N).

» We restrict jw,, = jwg+jmA m=1,...,L and L > 2K.

» We have N samples: y, = (x(t),¢o(t —n)), n=0,1,..N — 1

» We obtain
Sm = Yo CmnYn
— ffOOOX(t)ejwmtdt,
K—1

_ 1 t
— k—0 xkefw'" k

. K_]. N '>\mt - K_l N m _
o k=0 Xkej = k=0 Xkuk s m = 1, ceey L.
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Prony’s Method
« The quantity

— V'K j — K m —
Sm = Dk=1 X! CoTm = Y1 XUy m=1,..,L

is a sum of exponentials

- Retrieving the locations u; and the amplitudes x; from {s,,}% _, is a classical
problem in spectral estimation and was first solved by Gaspard de Prony in
1795.3

« Given the pairs {x;, u;} then 7, = (Inwy)/ jw,.

3p. Stoica and R. Moses. Spectral Analysis of Signals. 2005.

#
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Our approach for time decoding of signals

Signals

* We consider sparse continuous-time signals like streams of diracs, stream of
pulses or piecewise constant signals

Sensing Systems

«  We filter before using a TEM

Time Encoding Machine

Compact-support filter (zero-crossing detector/
(polynomial/exponential spline)  integrate-and-fire system)

QD(—t) TEM ty ty t3 ty
U Timing Information

Non-bandlimited
input signal
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Our approach for time decoding of signals
* Reconstruction of x(t) depends on the
— sampling kernel ¢(t)
— the density of time instants {t,,}

« We achieve a sufficient density of output samples by imposing conditions on:
— The frequency of the comparator's sinusoidal signal (crossing TEM ).
— The trigger mark of the integrator (integrate-and-re TEM ).
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Our approach for time encoding of signals

Comparator System

( ) Zero-crossingl by, Loyeens U
9=t + + detector
x(t) y(t)

At the crossing times, y(t,) — g(t,) = 0 hence y(t,,) = g(t,).
Moreover:

y(tn) - fX(T)(p(T _ tn) dt = (X(t), (p(t _ tn))
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Sampling Kernels (B-splines)

‘The anti-causal version of the zero-order B-spline is defined as:

0, otherwise.

‘The P-order B-spline can be computed as:
ﬁp(t) = \50(1‘) % 50(1:) % ﬂo(tz,

P+1 times

‘The P-order B-spline satisfies the Strang-Fix condition:
Z Cm,nBP(t — n) = t",
nez

where m € {0,1, ..., P}, and for a proper choice of coefficients cp, p.

#
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Sampling Kernels (B-splines)

Polynomial Splines

» Linear combinations of uniform shifts of B-splines reproduce polynomial
because the ‘knots’ overlap and ‘compensate’ each other.

121

[ e T —— ———
0.8

0.4r
0.2

6
5
4
0.6} 1 3
2
1
0 0
1

-0.2¢
-1 0 1 2 3 4 5 6 -1 0 1 2 3 4 5 6

* Key insight: in the case of non-uniform shifts, reproduction of
polynomials is still possible locally in ‘knot-free’ regions

d
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Sampling Kernels (B-splines)

L4 3
,mmmn Reconstruction
- A Non-uniform splines
' \" = = True polynomial

Key insight: in the case of non-
uniform shifts, reproduction of
polynomials is still possible

locally in ‘knot-free’ regions 0.5

Sketch of the argument: el o |
- Each ‘knot-free’ piece ofa — 2|
spline of order d is a oo 1
polynomial of degree d

* d overlapping splines can
reproduce polynomial of
maximum degree d in a
‘knot-free’ region

(b)

(@)

0.5 1 1.5 2 2.5
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Sampling Kernels (E-splines)

« Exponential Splines (E-splines) can reproduce exponentials:

» The first-order E-spline of support L is defined as:

( eal—a’o
e %ot 4

a1 — Uy
@(t) =3

e %ot 4
o — aq

. 0,

« This function can reproduce exponentials e~ %0t and e~ %1t,

z Cm,nﬁo(t —n) = e ml

nez

e—a1+a0 _ant _L
e a1t —L<t<—
ao —_ a1 2
—aqt —L
e “1 —<t<0
a; — g 2
otherwise

1

0.8

0.6

0.4

0.2

0

-2

-1.5

0.5
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Sampling Kernels

* Reproduction of exponentials using uniform shifts of the first-order E-spline:

z Cm,n¢(t —n) = e ml

nez

= = =Exponential we want to reconstruct
Uniformly shifted E-splines -
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Sampling Kernels

« Reproduction of exponentials can be achieved locally in I, using at least two

non-uniform shifts of the E-spline:
N

z Crn@(t —t,) = e mi N > 2

n=1

 The kernels should be continuous within that local interval 1.

tqq - discontinuity of @(t —t;)

tq, - discontinuity of @ (t —t,)
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Comparator System — One Input Spike

Zero-crossing t1,|t2 ----- tn
I > (P(—t) detector

x(t) y)t

L ANV

S fs = |nput signal
Filtered input

Comparator's reference signal
®  Qutput non-uniform times

0 05 1 15 2 25 3 35 4 45 5
{[s]
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Comparator System — One Input Spike

e
e P
—— COPparinr s refeeno s sgnal
r— t AL ®  Quipid nen-unilomm Bmes
1:1"( 1) aplt — ta) & - n:nmwmmwnul
T il | 4 kY i B B K
|| ||II i i |1 I II |I | |I |'
| F | ’J'J"\ ll | Il |
ns -Jl" |~ | II | I| |
-
|/ | \
V7] .4 L]
B I_.- If # J- + ]-
[ g T
I S T
| : [ ko
I : T E
4 | H [ | |
| : | |1 |
| | i Wi @
I| | E 1 I| E II II
V A V.
-
i T_'. '
o 2 a 3

y(t1) = (x(t), o(t — t1))

y(tz) = (x(0), p(t = t2))

d
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Comparator System — One Input Spike
! ' ' —_-U'anr.:-;-_ull
o e el
| xljlxj . | I' | I
I'I |I j} ‘f 'I II| 'I II| ,'I
Y YL - I| 1
|I ;*I' |I ¥ | | I| | I| || I|
i 1 1 3 |I- ;I! .- l,L_ I
VT 1Time =t 1 0V 8 U [
g ) WEd 4 0 Yd LK N
v 1t Mg v toYye Lo
ot L RiRE B¢ LA T I
Vo | § o] Ll YE 4]
I| 'I I| II I| II II| |I II |I I' |I I' II
."I ¥ = "'I'-T.-'IIL_-" \/ I.J'I II'-J'I II' /
i ac AR
We assume: _ﬁ ; : ;, —

« Amplitude of the Dirac |x;| < 1 ' '
« The sampling kernel ¢(t) and its non-uniform shifts reproduce e/®otand e /%ot

and 0 < wy < — where L is the support of ¢(t).
« The frequency of the sinusoidal signal satisfies f; > Z—SL

d
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Comparator System — One Input Spike
T T ! — gt sgral
g el SR
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45 I| | I| i EI| l )] l II I II \ || 1
| | Ly Bt v 11 &3
I| ,' I|I |I III || j I| II I| Ill I| |'I II .II
| | .‘ iy ,'L__._' I'-..-'I \/ W \
ST Z AR

e

Under these assumjptions:'
« The first two timing locations satisfy ¢t;,t, € [t4,T1 + %]. This means that

L
T1 € ltz _E,tll
* This is useful since in the interval I = [tz — % tll, the shifted kernels ¢(t — t;)
and ¢@(t — t,) have no knots (so can reproduce exponentials or polynomials)

#
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Comparator System — One Input Spike

«  We know we can find coefficients ¢/, ,, such that:
Z‘%l=1 CrIn,nQD(t - tn) = eja)mt’ fortel,m=0,1.

 We then have:

2 2 ; ,
o Z C(I),le(tn) B Z C(I)'n<x(t)' <p(t N tn)> = j x(t) Z C(I),n(p(t — tn) = xlejwon,
n=1 n=1 —00 ~
2 2 ) ,
S; = Z 1y (tn) = Z i nfx(t), @(t — ty)) = j x(t) Z Lot —ty) = x;ed01m,
n=1 n=1 —00 ~

Jwi—wgp) Sy

#
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Comparator System — One Input Spike
I I I ._—'ﬁFnFﬂ’?'“ll
Tlmf t— h)lr{n[t I_ ta) E‘IEE"E% E’":T:'«:::
I'| T} | AT
B O [ ] [ |
nsf | I+ | | [
JI P ll || ' |I ' I
| __,"rl | | 5 H | I| | | |
i o 0 R T (I A Y R S O
U U i[mt B2t | | F | 1|
) v YWY e LY
v Yara o MY bW Y 1o
o 300 ReEE Ay LR SO R A
b4 | 4 1 [ 11} tH 16 L)
|I ,' | § o ! | | II I II (
| 1 | 1] 1| 1 { ¢ \ ] 1]
| g | i Vi
—~* 3 HTI'-

e

+ We use Bolzano’s intermediate value theorem to show that t;,t, € [t1, 71 + %]
* Denote with h(t) = g(t) — y(t), assume g(t,) > 0 and x; > 0 then h(t;) > 0 and
h (rl + E) =g (rl + 5) -y (T1 + %) < 0, this implies h(t;) = 0 for some t; € [t4, 71 + g]

2 2
o T, 5T,
* Similarly t; € [t + 2,71 + 7]

. 1 2L L
* Since Ty = — < T then ty,t; € [14,7; +3]
S

f;
ﬁ
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Comparator System — Example

1 'y
0.5
. I
05 1
1t
0 5 10 15 20 25
(@)
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(c)
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10 15 20 25
(b)

10 15 20 25
(d)
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Summary on Sparse Sampling with Comparator

« We can sample and perfectly reconstruct non-bandlimited signals w

* Number of time samples still large (time information provided also when
signal is zero) @

» Use the new framework but with the Integrate-and-Fire TEM & & &

——=® Output non-uniform sampies‘
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Integrate and Fire TEM

x18(t —1q)

Cr
x(t f(t t - |
() p(—t) ( ); Integrator v TDhreshoId T : |
_— etector ! tl t2 t3 t4. . (¢ *qg,)(t —t3)
¢, —
\......_spike triggered reset ! I e

« The sampling kernel ¢(t) and its non-uniform shifts reproduce e/®otand e~/ ®ot
and 0 < wq < % where L is the support of ¢(t).

« What is the minimum value of the trigger mark C; that would allow the perfect
reconstruction of stream of pulses or piecewise constant signals?

ﬁ
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Integrate and Fire TEM

x8(t - 1) e
x(1) f(0) ® r o
—  @(-t) ~» Integrator T[? r:!s htOId — t / RTICED
etector : tl t2 t3 t4 )5 ((P * qﬂg)(t - tZ) ‘.“;’ .\\
_CT i _ f‘ '\.“

I spike triggered reset (@5 q0,)(t — 1) |/

________________________________________ ofLe ./]4/1/]411/\/1/1/‘ _—
LTt bty :
]

!

« Given the times t,, t,, ..., t,,, the amplitude values are

th tn
Yn=y(tp) = £Cr = / f(r)dr = /t /x(a)¢(a— t)dadr.

tn— 1

d
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Integrate and Fire TEM

26t —1) =
CT / .
x(t) f(t) y(t) | |
—  @(-t) ——»| Integrator T[?rfs htOId — t \k19(m = )
etector ' > :
| ti 2|tz ta s (@xqg)t—t)| / \
_CT * - f’ '\_“
I______spike triggered reset | @poet=t [
____________ ~b o /||/fif///{\/\\
E T .fx' i l3
3 : )

« Equivalently the output samples can be expressed as:
y(tn) = (x(t), (¢ = qo,)(t — th-1)),
where 6, = t, — t,-41 and qg (t) is defined as:

(t) _ 17 O S t S en;
o 0, otherwise.

d
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Integrate and Fire TEM

x18(t —1q)

Cr
x(t f t t .\
( ) (p(—t) ( ); Integrator y( ) TDhreshoId > L fren o
_— etector ! tl t2 t3 t4. (¢ *qg,)(t —t3)
—Cq] i -
\.......spike triggered reset ______! iy

« The equivalent kernel (¢ * qq,)(t — t,_1) is still able to reproduce
exponentials

» So trigger mark must guarantee enough samples in a short interval

* Proposition: when Cy < TZ)Z* (1 — Cos (wTOL)) then t,t,, t3 € [T1;T1 + g] and

0
perfect reconstruction is possible
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Integrate and Fire — Reconstruction of Pulses
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Integrate and Fire — Reconstruction of Pulses
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Reconstruction with Arbitrary Kernels

» Sufficient conditions for perfect reconstruction may appear restrictive, but they
can be relaxed with minimum loss in reconstruction quality

» The proposed reconstruction framework can be used with any acquisition device

o If reproduction of exponentials is not satisfied use LS methods to find the
coefficients Cmn that achieve best fit:

(F (1), B(t — tn)) Zcmk (t —tx), B(t —tn)), SO that Zcmnfﬁ ~domt
0
F i e 4
2 ‘ 0004 2
i n: 0
14 002 -1
A 008 3
4 {1.01n -
o 2 4 B B 10 o 2 3 5 g T 4 & B 10
|l ] [
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Integrate and Fire — Piecewise Constant Signals

x(t) f(t) y(t)

r

L\—l'—» /\/ > Integrator >

Threshold
Detector

\ Ay

...................................................................

spike triggered reset

This is equivalent to the way a pixel operates
in neuromorphic video cameras

ty

ty

t3
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Integrate and Fire — Piecewise Constant Signals

x(t) ¢(=t) f(t)

y(t)

JJ_L_[—*/\/ —'W—A‘WT'

Integrator

Threshold
Detector

...................................................................

Filtered Stream of Diracs

spike triggered reset
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Integrate and Fire — Piecewise Constant Signals
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If the distance S between discontinuities is on average S > (L — 1)T with T being
the sampling period in uniform sparse sampling* then our time encoding framework
is more efficient than uniform sampling (lower sampling density) & & =

4P.L. Dragotti, M. Vetterli and T. Blu, Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon
meets Strang-Fix, IEEE Trans. on Signal Processing, vol.55 (5), pp. 1741-1757, May 2007.
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Spike-Based Processing

« Sensing efficiently is only half of the story
* Once a signal has been converted into spikes, how do we process it efficiently?

« Creating an Al can be five times worse for the planet than a car (resource
NewScientist)

 How do we compute fundamental transforms (e.g., Fourier or Wavelet Transforms)

« Can we find the sparse representation of a signal using spiking neuron models?
(Some results based on spike rates*®)

« Deep learning with spiking signals?6

4P.T.P. Tang, T.-H. Lin, and M. Davies, “Sparse coding by spiking neural networks: Convergence theory and
computational results” arXiv:1705.05475 , 2017.

5C. Pehlevan, “A Spiking Neural Network with Local Learning Rules Derived From Nonnegative Similarity
Matching”, ICASSP 2019.

6E. Neftci, “Surrogate Gradient Learning in Spiking Neural Networks,”, arXiv:1901.09948, 2019.
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Conclusions

« Event-based sensing and processing is an emerging and exciting research
area!

« Topic at the intersection of signal processing, computational neuroscience
and machine learning

* Proved sufficient conditions for the exact reconstruction of classes of sparse
signals from time-based information

* Many open questions on both the sensing and the processing front
— Multi-dimensional case
— Adaptive acquisition
— L, optimization strategies
— Learning sparsifying representations for spiking signals

#
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