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Convolutional Neural Networks in Audio

Projects:
SALSA (Semantic Annotation by Learned Structured and
Adaptive Signal Representations ) (WWTF,
Mathematics+)
aMoby (Acoustic Monitoring of Biodiversity) (WWTF,
NEXT - New Exciting Transfer Projects)
People involved:

Roswitha Bammer, Pavol Harar (NuHAG, University of
Vienna)
Arthur Flexer, Thomas Grill, Jan Schlüter (OFAI)
Stefan Lattner (Sony Computer Science Laboratories, Paris,
France)

M. Dörfler Invariance in Deep Learning.
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Structure in Data Sets

Learning is generalization ..
Learning language
Learning categories
Learning mathematics, how to play instruments, how to
build furniture
And how can this be formalized?

M. Dörfler Invariance in Deep Learning.
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Structure in Data Sets

Generalization depends on structure
”It is impossible to justify a correlation between
reproduction of a training set and generalization error off
of the training set using only a priori reasoning. As a
result, the use in the real world of any generalizer that fits
a hypothesis function to a training set (e.g., the use of
back-propagation) is implicitly predicated on an assumption
about the physical universe.”

D. H. Wolpert,
On the connection between in-sample testing and generalization error; Complex
Systems, Vol.6/1, 1992

Learning without considering structure is memorization.
Structure can be found in data and in learning tasks.

Formally the (assumed) structure in learning tasks is
described by the chosen hypothesis space from which the
input-output mapping is eventually chosen.

M. Dörfler Invariance in Deep Learning.
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Structure in Data Sets

Relevant structures in image data are relatively
straight-forward to understand
(Deep) convolutional neural networks designed to extract
local structures in images
Equivalently, some basic invariances in images are easily
understood, such as (depending on problem)

rotation
illumination
small deformations

Structures due to these invariances often imposed by
augmentation

What about time series?

M. Dörfler Invariance in Deep Learning.
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Structure in Data Sets - Excursus 1

What about time series? The most critical...

Avoid using airplanes whenever possible
Ask for video conferences
Join https://www.scientists4future.org

Ask your institution to promote Climate-Friendly Research
and to join alliances of climate-friendly universities

M. Dörfler Invariance in Deep Learning.

https://www.scientists4future.org
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Structure in Data Sets

Our favorite time series: music, speech 1

1Mark Feldman, Sylvie Courvoisier: KAFZIEL, from: Book of Angels: music of John Zorn

M. Dörfler Invariance in Deep Learning.
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Structure in Data Sets

Our favorite time series: music, speech 2
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(a) Standard Spectrogram of music
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(b) CQ-Spectrogram of music excerpt

2Mark Feldman, Sylvie Courvoisier: KAFZIEL, from: Book of Angels: music of John Zorn
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Convolutional Neural Networks in Audio

(Applied) harmonic analysis studies representation of
functions (signals) as superposition of basic waves which
reflect the expected structure of a signal class under
inspection.
A sequence {gj : j ∈ J} ⊆ H is called frame, if there exist
A,B > 0 such that ∀f ∈ H

A‖f‖2 ≤
∑
j∈J
|〈f, gj〉|2 ≤ B‖f‖2

Also, for a so-called dual frame g̃j and ∀f ∈ H

f =
∑
j∈J
〈f, gj〉g̃j .

M. Dörfler Invariance in Deep Learning.
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Convolutional Neural Networks in Audio

Example: Gabor frame
G(g, α, β) = {MβjTαkg : j, k ∈ Z}.
Tαkg(t) = g(t− αk) and Mβjg(t) = g(t) · e2πiβj .

M. Dörfler Invariance in Deep Learning.
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Convolutional Neural Networks in Audio

Note: audio signals are almost always turned into images before
being further processed in deep learning.
Recent example on music signals: deep CNN learns semantic
music content from raw audio data with more than 90%
accuracy (!?).

J. Pons, O. Nieto et al,
End-to-end learning for music audio tagging at scale
http://arxiv.org/abs/1711.02520, ISMIR 2018, Paris

However..

Pandora owns 1.5 millions of manually annotated music tracks
For training data of up to 500.000 hours of music, learning on
raw audio cannot beat learning on pre-processed data.
Training time around 4 weeks.

M. Dörfler Invariance in Deep Learning.
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Convolutional Neural Networks in Audio

We are therefore facing several questions when learning from
audio:

Which representation would a Neural Network learn?
To which extent can end-to-end learning improve
performance if sufficient amount of data is available?
Can a representation which encodes beneficial invariances
reduce necessary network size, amount of data and training
time?

M. Dörfler Invariance in Deep Learning.
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Learning as a mathematical paradigm

Learning from data: look for a function f : X 7→ Y, which
describes with sufficient accuracy the ”nature of data”. ...
Learning means ”improving with experience” (Mitchell,
Machine Learning, 1997)

Two important examples:
1 Regression: X = Rd,Y = R
2 Classification: X = Rd,Y = {c1, . . . , cn}, cj ∈ R

M. Dörfler Invariance in Deep Learning.
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Invariance, Symmetry and Stability

Features are supposed to make life for learners easier ...
A feature extractor Φ = (Φk)dk=1 : RL 7→ RM1×...×Md aims
at a decomposition f(x) = f0(Φ(x)) with f0 (much) simpler
than f !
Φ separates f linearly, if f(x) is sufficiently closely
approximated by

f̃(x) = 〈Φ(x), w〉 =
d∑

k=1
wk · Φk(x).

M. Dörfler Invariance in Deep Learning.
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Spectrogram and Gabor Frames

STFT of f with respect to a time-localized window g (e.g.
Gaussian):

Vgf(b, k) = F(f · Tbg)(k) =
∫
t
f(t)g(t− b)e−2πiktdt

Spectrogram: S0(lb0, kν0) = |Vgf(lb0, kν0)|2 = |〈f, gk,l〉|2 where

{gk,l = Mkν0Tlb0g : k, l ∈ Z} . . . Gabor frame

M. Dörfler Invariance in Deep Learning.
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Feature Extractor and Mel Spectrogram

Spectrogram expresses essential signal properties much
more clearly, or sparsely, than raw audio data.

(c) Raw audio data: time-domain
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(d) Spectrogram of music excerpt

M. Dörfler Invariance in Deep Learning.
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Feature Extractor and Mel Spectrogram

Spectrogram expresses essential signal properties more
clearly, or sparsely, than raw audio data.
...and induces invariance e.g. to phase shift and local
changes (by subsampling)
Further invariances can by introduced by averaging over
computed coefficients.

Example (Mel spectrogram)
The mel spectrogram is derived from S0 by taking weighted
averages over frequency channels defined by the mel-scale:

MSg(f)(l, ν) =
∑
k

S0(l, k) · Λν(k).

S. S. Stevens, “A scale for the measurement of the psychological magnitude pitch,”
Acoustical Society of America Journal, vol. 8, 1937.

M. Dörfler Invariance in Deep Learning.
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Invariance

Definition
Given an augmentation A, that is, a set of bounded operators
acting on X: A = {Tp : X →X}, then f is said to be invariant
to A with respect to D ⊂X, if f(Tp(x)) = f(x) for all x ∈ D.
If A is parametrised by a set P, on which a metric | · |P is
defined, then we say that f is locally stable to A, if
‖f(Tp(x))− f(x)‖ ≤ C · |p|P · ‖x‖ for all x ∈ D, all p ∈ P and
some constant C.

Note that for categorical problems local stability actually
implies local invariance.

M. Dörfler Invariance in Deep Learning.
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Feature Extractor and Mel Spectrogram

Time-frequency representations can introduce approximate
invariance to small, local time-frequency modifications.
Convolutional Neural Networks adaptively extract local
invariances
Can the extent of desirable invariance be learned by tuning
the representation parameters?

M. Dörfler Invariance in Deep Learning.
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Structure of Convolutional Neural Networks

Parameters defining layer n in a neural network:

xn+1 = σ(Anxn + bn)

xn ∈ Rd(n) – data vector (array) in the n-th layer
An – matrix of weights in n-th layer
bn – vector of biases in n-th layer
nonlinearity σ (applied component wise, e.g. sigmoid,
ReLU (Thresholding), modulus)

Convolutional layers of CNNs: An are block-Toeplitz.
(Front-end, Feature-Extraction)
Dense layers: general An. (Back-end, Classification stage)
Parameters θ = (An, bn)Npn=1 are learned by gradient descent
algorithms.

M. Dörfler Invariance in Deep Learning.
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Example: Performance on Singing Voice
Detection

Singing voice detection: binary problem of presence or absence
of human voice in music

Let’s listen to and watch some examples!

http://ofai.at/˜jan.schlueter/pubs/2016_ismir/
alexanderross/index.html

The architecture has a total number of 1.41 million weights
(91% for the dense layers), but far less data points for learning,
and leads to an error rate of less than 7% (on unseen data).

M. Dörfler Invariance in Deep Learning.

http://ofai.at/~jan.schlueter/pubs/2016_ismir/alexanderross/index.html
http://ofai.at/~jan.schlueter/pubs/2016_ismir/alexanderross/index.html
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Spectrogram and Gabor Frames
Linear sampling in frequency → most energy accumulated in
lower frequency channels.
For non-stationary Gabor frames, windows with adaptive
bandwidth replace modulated versions of a fixed window g:

{hν,l = Tlbνhν : l ∈ Z, ν ∈ I}
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(e) CQ-Spectrogram of music excerpt
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Spectrogram and Gabor Frames

Non-stationary Gabor frames:

{hν,l = Tlbνhν : l ∈ Z, ν ∈ I}

Sa of size M ×N containing the coefficients of f with respect to
the non-stationary Gabor frame, i.e.

Sa(l, k) = |〈f, Tlhν〉|2.

Now M = |I| can be chosen such that M ≈ N .
N. Holighaus, M. Dörfler, G. A. Velasco, and T. Grill, “A framework for invertible,
real-time constant-Q transforms,” IEEE Trans. Audio Speech Lang. Process., vol. 21,
no. 4, pp. 775 –785, 2013.

M. Dörfler Invariance in Deep Learning.
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The Mel-spectrogram and adaptive filter banks

Idea: learn the parameters of the adaptive filter bank.
Expectation: results should out-perform mel-spectrogram

J. Andén and S. Mallat, “Deep scattering spectrum,”
IEEE Transactions on Signal Processing
vol. 62, no. 16, pp. 4114–4128 (2014)

Compute filtered version of f with respect to filter bank hν
(generating non-stationary Gabor frame {Tlhν}, ν ∈ I, k ∈ Z )
and apply subsequent time-averaging using a time-averaging
function $ν :

FBhν (f)(b, ν) =
∑
l

|(f ∗ hν)(αl)|2 ·$ν(αl − b).

Recall:

MSg(f)(b, ν) =
∑
k

|F(f · Tbg)(βk)|2 · Λν(βk).

M. Dörfler Invariance in Deep Learning.
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Mel-spectrogram and adaptive filter banks

Proposition
For all ν ∈ I, let g, hν ,Λν , $ν be given. Let MSg(f) and
FBhν (f) be computed on a lattice αZ× βZ and set

Mν(x) =
∑
l

T l
β
F−1(Λν)(x) and Mν

F (ξ) =
∑
k

T k
α
F($ν)(ξ).

Then the following estimate holds for all (b, ν) ∈ αZ× I:

|MSg(f)(b, ν)− FBhν (f)(b, ν)| ≤ ‖Vgg ·Mν − Vhνhν ·Mν
F ‖2‖f‖22

In particular, if

Vhνkhνk(x, ξ) ·F($νk)(ξ) = Vgg(x, ξ)·F−1(Λνk)(x),

then MSg(f)(l, νk) can be obtained by time-averaging the filtered
signal’s absolute value squared on the full lattice Z (α = 1).

M. Dörfler Invariance in Deep Learning.
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Mel-spectrogram and adaptive filter banks
IDEA of Proof:

M. Dörfler Invariance in Deep Learning.
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Mel-spectrogram and adaptive filter banks

IDEA of Proof:

M. Dörfler Invariance in Deep Learning.
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Mel-spectrogram and adaptive filter banks

Start from S0(αl, βk) = |Vgf(αl, βk)|2 = |F(f · Tαlg)(βk)|2.

Then, with m(k, l) = δ(αl − b)Λν(βk):

MSg(f)(b, ν) =
∑
k

|F(f · Tbg)(βk)|2 · Λν(βk)

=〈
∑
k

∑
l

m(k, l)〈f,MβkTαlg〉MβkTαlg, f〉

Mel-coefficients can thus be interpreted via a Gabor
multiplier: MSg(f)(b, ν) = 〈Gα,βg,mf, f〉.
Alternative operator representation (spreading function
ηH):

Hf(t) =
∫
x

∫
ξ
ηH(x, ξ)f(t− x)e2πitξdξdx.

M. Dörfler Invariance in Deep Learning.
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Mel-spectrogram and adaptive filter banks

Gabor multiplier’s spreading function
ηα,βg,m(x, ξ) = M(x, ξ)Vgg(x, ξ) where
M(x, ξ) = Fs(m)(x, ξ) =

∑
k

∑
l m(k, l)e−2πi(αlξ−βkx).

Equally rewrite the time-averaging operation as Gabor
multiplier:

FBhν (f)(b, ν) = 〈Gα,β
ȟν ,mF

f, f〉.

with mF (k, l) = Tb$ν(l)δ(βk) and spreading function
ηα,βhν ,mF

(x, ξ) = MF(x, ξ)Vhνhν(x, ξ).
Comparing the spreading functions leads to claimed result.

M. Dörfler, T. Grill, et al: “Basic Filters for Convolutional Neural Networks Applied to
Music: Training or Design?’ Neural Computing and Applications, 2018,
https://arxiv.org/abs/1709.02291, 2017.

M. Dörfler Invariance in Deep Learning.
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Mel-spectrogram and adaptive filter banks
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Figure: Spreading functions of operators defining different feature
extractors.

M. Dörfler Invariance in Deep Learning.
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Equivalence of feature-network pairs

Therefore, adaptive filter bank with subsequent time-averaging
over learned intervals yields a more expressive feature- network
pair than using classical Mel-coefficients.

Definition (CNN equivalence)
Given two feature-network pairs (Φj ,Nj), j = 1, 2, we say that
(Φ1,N1) is subordinate to (Φ2,N2) with respect to a data set D,
if for all θ1 ∈ Rp1 there exists a θ2 ∈ Rp2 such that

N1(θ1)(Φ1(fi)) = ci ⇒ N2(θ2)(Φ2(fi)) = ci ∀(fi, ci) ∈ D.

(Φ1,N1) and (Φ2,N2) are equivalent with respect to D if they
are subordinate to each other.

M. Dörfler Invariance in Deep Learning.
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Equivalence of feature-network pairs

Therefore, adaptive filter bank with subsequent time-averaging
over learned intervals yields a more expressive feature- network
pair than using classical Mel-coefficients.

Theorem

Consider CNNs N1, N2 with Dc convolutional layers.
N2 has an additional convolutional layer, preceding the Dc

convolutional layers and comprising a finite number of
convolutional kernels with sufficient length in time-direction and
length 1 in frequency direction.
Then (MSg,N1) is subordinate to (Sa,N2) if the windows g, hν
and the mel-filters Λν are chosen such that MSg = FBhν .

M. Dörfler Invariance in Deep Learning.
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Application to Singing Voice Detection

Experimental Setup:
1 Size reduction possible since we expect useful invariances

captured by features
2 Four convolutional layers, two 3× 3 convolutions (32 and

16 kernels), 3× 3 non-overlapping max-pooling, two more
3× 3 convolutions (32 and 16 kernels), 3× 3 pooling.

3 Two variants for dense layer (Classification stage):
‘small-two’: two dense layers of 64 and 16 units (total
number of weights 94337, 85% classification stage).
‘small-one’: one dense layer of 32 units (total number of
weights is 53857, 73% classification stage).

4 Final dense layer is a single sigmoidal output unit.

M. Dörfler Invariance in Deep Learning.
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Equivalence of feature-network pairs - empirical
results
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2 Pre-Processing Audio for Deep Learning
Spectrogram, Mel-Spectrogram and Gabor Frames
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Gabor scattering
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Invariance

Proposition
Let (Φ1,N1) be subordinate to (Φ2,N2) with respect to D and let
A(D) denote an augmented data-set.
If N1(Φ1(A(x))) = N1(Φ1(x)) for all x ∈ D, and Φ2 is
invariant to A, then (Φ1,N1) is also subordinate to (Φ2,N2)
with respect to A(D).

Example: Let (Id,N1) be subordinate to (S0,N2) with respect
to D; let M(D) denote the augmented data-set achieved by
multiplication with a phase factor. If N1 is invariant to M , then
(Id,N1) is also subordinate to (S0,N2) with respect to M(D).

S. Mallat.
Understanding deep convolutional networks.
Philos Trans A Math Phys Eng Sci., 374(2065), 2016.

J. Sokolic et al
Generalization Error of Invariant Classifiers
Preprint, 2017

M. Dörfler Invariance in Deep Learning.
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Invariance

Proposition
Introducing invariance to augmentation A in a stable learning
algorithm leads to a reduction of the generalization error by a
factor proportional to N(D)/N(A(D)). Here, N(D) is the
covering number of a metric space.

(Example: rotation invariance in images).
Hence: invariant feature extractor leads naturally to invariant
learning algorithm and thus reduces the generalization gap!

J. Sokolic et al
Generalization Error of Invariant Classifiers
Preprint, 2017

M. Dörfler Invariance in Deep Learning.
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Invariance

Proposition
Introducing invariance to augmentation A in a stable learning
algorithm leads to a reduction of the generalization error by a
factor proportional to N(D)/N(A(D)). Here, N(D) is the
covering number of a metric space.

Observation: Invariance in CNNs is obtained by concatenating
learned filter-bank representations with non-linearities.

May look for representations which directly provide desired
invariances.

M. Dörfler Invariance in Deep Learning.
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Invariance: Gabor Scattering
Inspired by Mallat’s wavelet-based scattering transform, we
introduced Gabor Scattering: iteratively applies Gabor transforms
with different subsampling schemes, a non-linearity and subsequent
time-averaging.

Definition (Gabor Scattering, schematic)
For given Gabor frames {Mβ`jTα`kg`}, and non-linearities σl,
` = 1, . . . , N , the j-th component in the `-th layer of Gabor
scattering defined by

f j` (k) = σ`(〈f`−1,Mβ`jTα`kg`〉H`−1),

where f0 is the input signal and f`−1 is an output-vector from
the previous layer. Time-averaging with φ` yields Feature
Extractor :

Φ(f) :=
N⋃
`=0

⋃
j

{f j` ∗ φ`}.

M. Dörfler Invariance in Deep Learning.
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Invariance: Gabor Scattering
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Invariance: Gabor Scattering

1st layer in Gabor scattering locally invariant to amplitude
variations.
2nd layer locally invariant to frequency variations.

R.Bammer, P.Harar, MD, “Gabor frames and deep scattering networks in audio
processing ,” preprint, to appear. https://arxiv.org/abs/1706.08818.

M. Dörfler Invariance in Deep Learning.



45/49

Invariance: Gabor Scattering
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Invariance: Complex Autoencoder

Propose an architecture called Complex Autoencoder
(CAE): learns features invariant to orthogonal
transformations.
Mapping signals onto complex basis functions learned by
the CAE results in a transformation-invariant “magnitude
space” and a transformation-variant “phase space”.

Some examples of real (top) and imaginary (bottom) basis
vectors learned from audio signals by imposing
shift-invariance.

S.Lattner, MD, A. Arzt: “Learning Complex Basis Functions for Invariant
Representations of Audio ,” ISMIR 19, 2019.
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Invariance: Complex Autoencoder

Principal Idea: aim at learning orthogonal transformations
encoding invariances of a class of signals assumed to be useful
for learning task at hand.

Proposition
If an orthogonal transformation ψ : RN → RN is diagonalised
by a unitary matrix W, then the feature vector given by |Wx|
for all x ∈ RN is invariant to ψ. In other words, we have
|Wx| = |Wψ(x)| for all x ∈ RN .

Invariance-property of the magnitude space leads to
state-of-the-art results in audio-to-score alignment and repeated
section discovery for audio.

Commuting operators possess simultaneous diagonalization.

M. Dörfler Invariance in Deep Learning.
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Summary

Deep Learning has reached most areas of relevance, both in
research and everyday life
For complex problems, satisfactory results require huge
amount of data and solving them consumes a lot of energy.
Designing smart feature extractors can lead to smaller
generalization gap and sampling error with less
data/computation time.
Encoding known invariances plays an important role in
reducing generalization error and thus improving
performance on unseen (validation) data.

M. Dörfler Invariance in Deep Learning.
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Thanks for your attention! Questions? Remarks?

M. Dörfler Invariance in Deep Learning.
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