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Empirical risk minimization

Given data z, estimate parameters x € R"™:
L 1
minimize, f(x) := . Zﬂ(zi;x)

where {(z;; ) is the sample loss.
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S 1
minimize, f(x) := . E 0(z; )
i=1
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Empirical risk minimization

Given data z, estimate parameters x € R"™:
_ 1
minimize, f(x) := . Zf(zi;w)

where £(z;; x) is the sample loss.
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Nonconvex problems are hard!

“..in fact, the great watershed in optimization isn't between
linearity and nonlinearity, but convexity and nonconvexity.

R. T. Rockafellar, in SIAM Review, 1993
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Recent developments: provable nonconvex optimization
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Only an incomplete list...

Phase retrieval: Gerchberg, Saxton '72, Netrapalli
et al.'13, Candes, Li, Soltanolkotabi 14, Chen,

Candés '15, Cai, Li, Ma'15, Zhang et al.'16, Wang et
al.’16, Sun, Qu, Wright '16, Ma et al.'17, Chen et al. 18,
Soltani, Hegde '18, Ruan and Duchi, '18, ...

Matrix sensing/completion: Keshavan et
al.’09, Jain et al.’09, Hardt '13, Jain et al.'13, Sun,

Luo '15, Chen, Wainwright '15, Tu et al.'15, Zheng,
Lafferty '15, Bhojanapalli et al. 16, Ge, Lee, Ma'16, Jin et
al.’16, Ma et al.'17, Chen and Li'17, Cai et al.'18, Li,
Zhu, Tang, Wakin '18, Charisopoulos et al. 19, ...

Blind deconvolution/demixing: Li et al."16,
Lee et al.’16, Cambareri, Jacques 16, Ling, Strohmer '16,
Huang, Hand '16, Ma et al.'17, Zhang et al.'18, Li,
Bresler '18, Dong, Shi’l8, ...

Dictionary learning: Arora et al.'14, Sun et
al.’'15, Chatterji, Bartlett'17, Bai et al.'18, Gilboa et
al.’18, Rambhatla et al.'19, ...

Robust principal component analysis:
Netrapalli et al. '14, Yi et al. 16, Gu et al.'16, Ge et
al."17, Cherapanamijeri et al.'17, Vaswani et al.'18,
Maunu et al.’19, ...

Deep learning: Zhong et al.’17, Bai, Mei,
Montanari'17, Du et al.'17, Ge, Lee, Ma'17, Du et
al.'18, Soltanolkotabi and Oymak, '18...



Statistical thinking in nonconvex optimization

Data/measurements follow certain statistical models and hence
are not worst-case instances.
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Statistical thinking in nonconvex optimization

Data/measurements follow certain statistical models and hence
are not worst-case instances.

minimize, f(x) = ;iﬁ(yz,a}) = E[l(y; x)]
i=1

population loss is often nice!

empirical loss

We will detail an example of “nice” population landscape later.



From population to empirical risk: a geometric perspective

Geometric analysis: uniform concentration of Hessians and
gradients, along some descent directions;

e one-to-one correspondence between critical points;

e preservation of geometric curvatures.

© Oo=[10]

empirical risk ~ population risk

Bai et al.’

16, Sun et al.'15, Sun et al.'16, Ge et al. '16; Figure credit: Bai, Mei, and Montanari



This talk: sample-starved regime

Sample-starved regime:

sample size 2 O(number of unknowns)




This talk: sample-starved regime

Sample-starved regime:

sample size 2 O(number of unknowns)

Even when E[f(x)] is locally strongly convex and smooth,

e f(x) may be much more ill-conditioned than E[f(x)];
smaller step size and more computation



This talk: sample-starved regime

Sample-starved regime:

sample size 2 O(number of unknowns)

Even when E[f(x)] is locally strongly convex and smooth,

e f(x) may be much more ill-conditioned than E[f(x)];
smaller step size and more computation

e f(x) may lack curvatures in certain regions.
complicated regularization



This talk: sample-starved regime

Sample-starved regime:

sample size 2 O(number of unknowns)

Even when E[f(x)] is locally strongly convex and smooth,

e f(x) may be much more ill-conditioned than E[f(x)];
smaller step size and more computation

e f(x) may lack curvatures in certain regions.
complicated regularization

4

Does the geometric gap between f(x) vs E[f(x)] hurt
optimization efficacy?



a case study with low-rank matrix completion



Revisiting PCA: in search of low-rank representation
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Given M > 0 € R"*" (e.g. sample covariance matrix), find its
best rank-r approximation:

M = argming ||[Z — M||3 st. rank(Z) <r

nonconvex optimization!



An optimization viewpoint

Low-rank factorization: if we factorize Z = X X T with
X € R™ " then it leads to a nonconvex problem:

minimizex cgnxr  f(X) = [| XX — M|}
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An optimization viewpoint

Low-rank factorization: if we factorize Z = X X T with
X € R™ " then it leads to a nonconvex problem:

minimizex cgnxr  f(X) = [| XX — M|}

Theorem (Baldi and Hornik, 1989)

Suppose M has a strict eigen-gap between )\, and \.11, the
critical points of f(X) can be categorized into

e global minima;

e strict saddle points, from which there exist directions to
strictly decrease f(X).

In other words, all local minima are global minima!

Baldi and Hornik. " Neural networks and principal component analysis: Learning from examples without
local minima.” Neural networks 2.1 (1989): 53-58.

10



Benign landscape of PCA

For example, for 2-dimensional case f(x) =

Fx) = [ex” — 1173

1]; strict saddles: © = [g] and £ {_11}

global minima: x =+ [1

— No “spurious” local minima!

11



Parameter recovery via gradient descent

e Find an initial point that falls into a
“basin of attraction”

A { e Gradient iterations:
W

N 4 X = X' - Vi(X)

fort=0,1,...
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Parameter recovery via gradient descent

e Find an initial point that falls into a
. “basin of attraction”

e Gradient iterations:

7\ ~
e X=X = VHX')

fort=0,1,...

e The spectral method can be used for initialization;

e Low-complexity local refinements via gradient descent.

12



Low-rank matrix completion: dealing with missing data
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Given partial samples of a low-rank matrix M in an index set ),
fill in missing entries.

find low-rank M s.t. PQ(M\) = Po(M) J

Applications: recommendation systems, ...

13
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Incoherence

1 0 0 0 111 --
0 00 0 111 -1
VS.

000 ---0 T 11 .- 1
hard easy

Definition (Incoherence for matrix completion)

A rank-r matrix M? with eigendecomposition M = USiU"T is
said to be p-incoherent if

o, . = el =
2,00 n F n

Note: [|U], ., = max; lel Ul

Lower bound [Candés and Tao]: p = urlogn/n.
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Incoherence

1 00 0 111 .-
0 00 0 111 ... 1
VS.
000 ---0 111 .1
hard p=n easy p=1

Definition (Incoherence for matrix completion)

A rank-r matrix M with eigendecomposition M = USiU"T is
said to be p-incoherent if

o, . = el =
2,00 n F n

Note: [|U], ., = max; lel Ul

Lower bound [Candés and Tao]: p = urlogn/n.
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A natural least-squares formulation

given: Pq(M)

4

minimizex cgnxr  f(X) = HPQ(XXT N M)H2

F

15



A natural least-squares formulation

given: Pq(M)
4

2
minimizex e f(X) = HPQ(XXT - M)HF

e Bernoulli sampling: Assume every entry is observed i.i.d.

with 0 < p < 1:

Bl = p | X X7 - M

15



What does the population level look like?

Population level (p = 1): this is PCA.
f (X)) restricted strongly convex and smooth

along descent direction V' when X is close to X1.

= |xx! — 117}
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What does the population level look like?

Population level (p = 1): this is PCA.
f (X)) restricted strongly convex and smooth

along descent direction V' when X is close to X1.

= |xx” — 117 %

Consequence: GD converges within O(log 1) iterations if p = 1. J

16



What does the finite-sample level look like?

Assume every entry is observed i.i.d. with probability 0 < p < 1.

JX)= Y (ef XX ey — M)
(4,k)eQ

17



What does the finite-sample level look like?

Assume every entry is observed i.i.d. with probability 0 < p < 1.

2
x)=3 (ejTXXTek — M)
(4:k)€Q
- _ polyl
Finite-sample level (p =< BY2ER)
f (X)) restricted strongly convex and smooth
along descent direction V' only when X is incoherent:

1X = XF 2,00 < 11X |20

17



Incoherence region

Which region enjoys both restricted strong convexity and
smoothness?
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Incoherence region

Which region enjoys both restricted strong convexity and
smoothness?

€1

leg (X — X*) |2 < e XF 2,00

e X is not far away from X'

e X is incoherent w.r.t. coordinates (incoherence region)
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Incoherence region

Which region enjoys both restricted strong convexity and
smoothness?

(%)) e

les (X = X5)[o < el X o llef (X = XF)]lz < €l X*[l2.00

e X is not far away from X'

e X is incoherent w.r.t. coordinates (incoherence region)
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Vanilla gradient descent is at risk

region of local strong convexity 4+ smoothness

GD on the pop. loss
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Vanilla gradient descent is at risk

region of local strong convexity + smoothness
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Vanilla gradient descent is at risk

region of local strong convexity + smoothness

GD on the pop. loss GD on the emp. loss

e Generic optimization theory only ensures that iterates remain
in ¢ ball but not incoherence region

e Existing algorithms enforce regularization, or apply sample
splitting to promote incoherence

19



Matrix completion via vanilla GD

minimizeXeRnw f(X): Z (e;‘rXXTek_Mj7k)2

(4,k)EQ
100 . . .
relative || - [[¢ error
relateive || - || error
relative || - || error
5 10°
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B
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10'15

50 100 150 200 250 300 350 400 450 500
Iteration count

Vanilla GD converges fast without regularization!
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Our findings: GD is implicitly regularized

region of local strong convexity 4+ smoothness
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Our findings: GD is implicitly regularized

NN . .
@ region of local strong convexity 4+ smoothness
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Theoretical guarantees - noise-free case

Theorem (Ma, Wang, Chi, Chen, FoOCM 2019+)

Suppose M = X' X" js rank-r, incoherent and well-conditioned.

Vanilla GD (with spectral initialization) achieves
o |X'Q" — XF|lp < plpr | X
o [X'Q" - XH|| < plpr | X

Fy

\/Lnfp| . (spectral)
e [ X'Q" - Xh”2,oo < ptum/%HXhHgm, (incoherence)

where p =1 — Z=ixll < 1, if step size 1) X 1/0max and sample
complexity n*p > p3nrd log® n.

22



Theoretical guarantees - noise-free case

Theorem (Ma, Wang, Chi, Chen, FoCM 2019+)

Suppose M = X' X" js rank-r, incoherent and well-conditioned.
Vanilla GD (with spectral initialization) achieves

o IX1Q! — X[ £ plpr | X
o [|X'Q" = XF|| < plur

Fy

\/%HXh . (spectral)

e [ X'Q" - Xh”2,oo < plur %HXWZOO' (incoherence)

where p =1 — Z=ixll < 1, if step size 1) X 1/0max and sample
complexity n*p > p3nrd log® n.

e A recent follow-up by Xiaodong Li studied the rectangular
case and improved the sample complexity to O(p?nr?logn).



Noisy matrix completion via vanilla GD

-10

-20

-30 -

-40

-50 [

-60

=70 ¢

Squared relative error (dB)

-80

-90

relative || - || error for X
relateive | - || error for X
relateive || - |2, error for X
relative | - || error for M |

10

20 30 40 50 60 70 80
SNR (dB)

Near-optimal entry-wise error control:

Jex - a] s
o0

logn o nlogn
Py [+ =) e

np Omin

23



Key ingredient: leave-one-out analysis
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incoherence region

w.r.t. e

o Create auxiliary leave-one-out iterates { X*(!)} are incoherent
in the /th row;
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w.r.t. e

o Create auxiliary leave-one-out iterates { X*(!)} are incoherent
in the /th row;

e Leave-one-out iterates X5 ~ true iterates X!
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Key ingredient: leave-one-out analysis

€

(xthy =7 T
‘@
~<h. \
ty o/, \
{X }l.~—-> 3 \

|
A
\ 8 SV
AP

~ S .
=~ — = 7 incoherence region

w.r.t. e

o Create auxiliary leave-one-out iterates { X*(!)} are incoherent
in the /th row;

e Leave-one-out iterates X5 ~ true iterates X!
o el (Xt=X5)|, < [lef (XE0 - X5)||,+||ef (Xt - X0,

24



An aside: stability of nuclear norm minimization

convex m UW nonconvex

ZeR

n . i
(i.j)eQ T (ig)eQ

Theorem (Chen, Chi, Fan, Ma, Yan '19)

With high prob., any minimizer My of convex program is nearly
rank-r and is minimax near-optimal:

_ — 1
[Mex — M*||p S oy /2, ||MCVX—M*}|OOSUF"I°#;

min 3" (Zi;— M)’ + 2|2 FELTEDY [((XYT),, = M)+ 3IXIE + 31V

v

Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation

via Nonconvex Optimization. arXiv:1902.07698.

25



The phenomenon is quite general



Generalized phase retrieval

A b'e AX yi = lla) X3
(HANE BE I mEm =
e i HEE [ ]
e E I — BNl [ |
H N = hEar —> B
BB ] | EEE [
m < i ] bzl
[ U N .
Bl —— [ [ [ | [ |
B EEE r o [ |
] EEE [ |
. H EH B EEm [ |
n

Recover X% € R™ " from m “random” quadratic measurements
v = H TX“H (@a] , XXT),  i=1,....m
where a;'s are i.i.d. Gaussian entries.

Applications: optical imaging, phase space tomography ...
27



Implicit regularization for generalized phase retrieval

m 9 2
minimizex cgnxr  f(X) = Z (HagXH —yk>
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Implicit regularization for generalized phase retrieval

2
minimize x crnxr  f(X) = <H XH —yk>

region of local strong convexity 4+ smoothness
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Implicit regularization for generalized phase retrieval

2
minimizex cgnxr  f(X) = (H XH —yk>

region of local strong convexity 4+ smoothness

O(1) 2 V*f(z) < O(logn)

28



Theoretical guarantees

Theorem (Li, Ma, Chen, Chi, AISTATS 2019)

Under i.i.d. Gaussian design, GD achieves linear convergence
o maxy |la] (X'Q' — X¥)|| < Viogn ‘ﬁ?g{”? (incoherence)
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Theoretical guarantees

Theorem (Li, Ma, Chen, Chi, AISTATS 2019)

Under i.i.d. Gaussian design, GD achieves linear convergence

o maxy |la] (X'Q' — X¥)|| < Viogn ‘ﬁ?g{”? (incoherence)

t
o |IX'Qt—XIp < (1 — JE(TXH)Q | XY\ (linear convergence)

provided that n =< and m > nr*logn.

1
(lognvr)202(X1Y)
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Theoretical guarantees

Theorem (Li, Ma, Chen, Chi, AISTATS 2019)

Under i.i.d. Gaussian design, GD achieves linear convergence

o maxy |la] (X'Q' — X¥)|| < Viogn ‘ﬁig(”i) (incoherence)

t
o |IX'Qt—XIp < (1 — JE(TXH)Q | XY\ (linear convergence)

provided that n < and m > nrlogn.

1
(lognvr)202(X1Y)

Big computational saving: GD attains e-accuracy within
O((logn vV r)?log %) iterations if m =< nr*logn . J




Towards robust nonconvex statistical estimation



Outlier-corrupted phase retrieval

A xr Ax Yy = |Aa‘;|2 + s
d N B m =
mE R & ”
EEE B R _ B o
H = = B —>
m < -. = - = - Sensor failures -
. . - Malicious attacks =
| =II = [
[ |
(0 R @ .
n
Recover 2% € R" from m corrupted measurements
T8 ,
Yy = ’aix‘z—l—si, 1=1,....m

where [[s]|o < a-m, 0 < a < 1 is fraction of outliers.
31



Existing approaches fail

e Initialization would fail: z° < leading
eigenvector of

PN 1 m
7 —_— N\
T - T
NN Y == yaia,
! 2N NN m “
o N\ =1
! I -~ <~ M\
\ \‘ | (/ \\ \\ \\\\
\ =\ - - . .
CL VALY e Gradient iterations would fail:
\ LTSN T
\ \ \ \\\\\\ ,\f: } ,||/
N AN \\\\:\_‘,i/ / ,/’ n m
NN t+1 ¢ .ot
- =2t - — g Vii(yi; ")
2 m 4
=1
fort=0,1,...
Even a single outlier can fail the algorithm! J
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Median-truncated gradient descent

Key idea: “median-truncation” —
discard samples adaptively based on
how large sample gradients / values
deviate from median

33



Median-truncated gradient descent

discard samples adaptively based on
how large sample gradients / values
deviate from median

Key idea: “median-truncation” —

¢ Robustifying spectral initialization: x" < leading
eigenvector of

1 m

.

= — D 5] Ly, <median{y.})
=1

¢ Robustifying gradient descent:
xitl —a:t——ZVK (yi;x*), t=0,1,...
€Tt
where Tp = {i: |y — |a] @'|| < median {|y; — |a] ='||}}.

33



Theoretical guarantees

Theorem (Zhang, Chi and Liang, TIT 2019)

Under i.i.d. Gaussian design, median-truncated GD achieves linear
convergence

o &t — x|s < (1—1)"||@"||2 (linear convergence)

for n < 1, provided that m 2 nlogn and o < « for some
constant «y.

34



Theoretical guarantees

Theorem (Zhang, Chi and Liang, TIT 2019)

Under i.i.d. Gaussian design, median-truncated GD achieves linear
convergence

o &t — x|s < (1—1)"||@"||2 (linear convergence)

for n < 1, provided that m 2 nlogn and o < « for some
constant «y.

Add-on robustness: GD attains e-accuracy
within O(log 1) iterations if m > nlogn
even with a constant fraction of arbitrary outliers.

34



Extension to low-rank matrix recovery

Similar idea for compressive low-rank matrix recovery:

yi:<Ai,Xu>+Si, 1=1,....,m

Ground truth GD GD median-TGD
no outliers 1% outliers 1% outliers

Figure: Recovery performance comparisons for compressive recovery of a
128 x 128 image from m = 4600 measurements and assumed rank r = 8.

Li, Chi, Zhang and Liang, “Non-convex low-rank matrix recovery with arbitrary outliers via
median-truncated gradient descent”, Information and Inference: A Journal of the IMA, 2019+.
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Final remarks



Bridging the theory-practice gap

Computational: Statistical:
near dimension-free near-optimal
iteration complexity sample complexity

Robustness:
resilient to

adversarial outliers

Fusing statistical thinkings into nonconvex optimization:
e identification and exploitation of benign geometric properties;

e analyzing iterate trajectories beyond black-box optimization.

37



Limitations

Problems 9
=<
o

[ ] AN

Robust PCA @
Blind deconvolution ® 9
Matrix completion @ J [
Phase retrieval ®

GD Altmin SGD Algorithms

e current analysis is largely case-by-case: lengthy proofs,
somewhat similar recipes;

e Is there a unified framework? E.g., RIP for sparsity.

e Can we relax strong randomness assumptions, e.g. Gaussian
(phase retrieval), and uniform sampling (matrix completion)?
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